QCD sum rules predictions for exclusive $b \rightarrow c$ transitions

Status 2016

Danny van Dyk
Universität Zürich

9th International Workshop on the CKM Unitarity Triangle (CKM2016)
29.11.2016

Motivation

$$
\frac{\mathrm{d} \Gamma\left(\bar{B} \rightarrow D^{*} \ell \nu\right)}{\mathrm{d} \omega} \propto\left|V_{c b}\right|^{2}|\mathcal{F}(\omega)|^{2}
$$

$$
\left|V_{c b}\right| \mathcal{F}(1)=35.81 \pm\left. 0.11\right|_{s t a t} \pm\left. 0.44\right|_{s y s t}
$$

$$
\mathcal{F}(1)=0.906 \pm\left. 0.004\right|_{\text {stat }} \pm\left. 0.012\right|_{\text {syst }}
$$

[HFAG 2014, averg. of ALEPH, BaBar, Belle, CLEO, DELPHI, OPAL meas.]

Continuum methods are important to

- provide complementary information
$-\mathcal{F}\left(\omega_{\max } \approx 1.5\right)$
- shape of $\mathcal{F}(\omega)$
- cross check existing lattice results [also for $B \rightarrow D \ell \nu: \mathcal{G}(\omega)$]

Outline

Review two continuum methods that have been successfully used to infer knowledge on $B \rightarrow D^{(*)}$ form factors

- Zero Recoil Sum Rules
inclusive constraints on combination of form factors in a single phase-space point

Outline

Review two continuum methods that have been successfully used to infer knowledge on $B \rightarrow D^{(*)}$ form factors

- Zero Recoil Sum Rules
inclusive constraints on combination of form factors in a single phase-space point
- Light-Cone Sum Rules with B-meson Light-Cone Distribution Amplitudes constraint on each form factor in small region around maximal hadronic recoil

Outline

Review two continuum methods that have been successfully used to infer knowledge on $B \rightarrow D^{(*)}$ form factors

- Zero Recoil Sum Rules
inclusive constraints on combination of form factors in a single phase-space point
- Light-Cone Sum Rules with B-meson Light-Cone Distribution Amplitudes constraint on each form factor in small region around maximal hadronic recoil
- brief comment on Dispersive Bounds
contraints on the shape of the form factors as functions of the momentum transfer

Zero Recoil Sum Rules: Basic Idea

Consider an artifical two-point function

$$
\text { [at } p_{X_{c}}=M_{X_{c}} v \text {] }
$$

$$
T_{J}(\varepsilon) \equiv \frac{1}{N_{J}} \int \mathrm{~d}^{4} x e^{i(v \cdot x) \varepsilon}\left\langle\bar{B}\left(M_{B} v\right)\right| \mathcal{T}\left\{J^{\dagger, \mu}(x), J_{\mu}(0)\right\}\left|\bar{B}\left(M_{B} v\right)\right\rangle
$$

$$
J^{\mu}=\bar{c} \gamma^{\mu}\left(\gamma_{5}\right) b \quad \varepsilon=M_{X_{c}}-M_{D}: \text { excitation energy above } M_{D}
$$

- can be obtained in two representations

OPE inclusive calculation: express in terms of local operators, and expand in $1 / m_{c}, 1 / m_{b}$ and α_{s}
hadronic express in terms of spectral densities involving hadronic matrix elements of exclusive processes (form factors)

- sum rule: equate moments of $T(\varepsilon)$ in both represenations, and infer knowledge on the form factors

$$
\oint_{|\varepsilon|=\varepsilon_{M}} \mathrm{~d} \varepsilon T_{A}(\varepsilon)=|\mathcal{F}(1)|^{2}+\ldots
$$

- hadronic representation is sum of strictly positive quantities

$$
\Rightarrow \text { upper bound on } B \rightarrow D^{(*)} \text { form factors }
$$

University of
Zurich ${ }^{\text {VH }}$

Limitations

- triple expansion in $\alpha_{s}, 1 / m_{b}, 1 / m_{c}$
- $\langle\bar{B} \| \bar{B}\rangle$ matrix elements of operators comprise non-perturbative input
- universal input: $\mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{D}^{3}, \rho_{L S}^{3}$
- can be extracted from $B \rightarrow X_{c} \ell \bar{\nu}$ data
$-1 / m_{c}$ expansion might converge slowly or not at all
$B \rightarrow D$ only $1 / m_{c}^{2}$ corrections in BPS limit [Uraltsev Phys.Lett. B585 (2004) 253-262] $B \rightarrow D^{*}$ reverse setup ($D^{(*)} \rightarrow B^{(*)}$ sum rules) suggests that the terms in the $1 / m_{c}$ expansion alternate in sign
- continuum background can be estimated in the OPE, but involves matrix elements of nonlocal operators $\left(\rho_{\pi \pi}, \ldots\right)$
- ZRSR provides reliable upper bound on sum of form factor terms

Status 2016: $B \rightarrow D \mu \bar{\nu}$

ZRSR upper bounds/estimates of $\mathcal{G}(1)$:

- $O\left(\alpha_{s}\right)$ and partial $O\left(\alpha_{s}^{2}\right)$ terms (for the unit operator)
- up to $O\left(1 / m^{3}\right)$ correction

$$
\begin{aligned}
\text { U2004 } \mathcal{G}(1) & <1.04 \pm 0.02 \pm \delta_{\text {exp }} \\
\text { GMU2010 } \mathcal{G}(1) & <1.02 \pm 0.04
\end{aligned}
$$

[Uraltsev Phys.Lett. B585 (2004) 253-262]
[Gambino,Mannel,Uraltsev Phys.Rev. D81 (2010) 113002]

Comparison with lattice results

FNAL/MILC $2005 G(1)=1.074(18)_{\text {stat }}(16)_{\text {syst }}$
[Fermilab Lattice and MILC Collaborations Nucl. Phys. Proc. Suppl. 140, 461 (2005)]
MILC $2015 G(1)=1.054(4)_{\text {stat }}(8)_{\text {syst }}$
[MILC Collaboration Phys.Rev. D92 (2015) no.3, 034506]
[Phys.Rev. D92 (2015) no.5, 054510]

Status 2016: $B \rightarrow D \mu \bar{\nu}$

ZRSR upper bounds/estimates of $\mathcal{G}(1)$:

- $O\left(\alpha_{s}\right)$ and partial $O\left(\alpha_{s}^{2}\right)$ terms (for the unit operator)
- up to $O\left(1 / m^{3}\right)$ correction

$$
\begin{aligned}
& \mathrm{U} 2004 \mathcal{G}(1)<1.04 \pm 0.02 \pm \delta_{\text {exp }} \\
& \text { GMU2010 } \mathcal{G}(1)<1.02 \pm 0.04 \\
& \text { [Uraltsev Phys.Lett. B585 (2004) 253-262] } \\
& \text { LvD2016 } \mathcal{G}(1)<1.012 \pm 0.012 \text { preliminary! }
\end{aligned}
$$

[based on inputs from Alberti,Gambino,Healy,Nandi Phys.Rev.Lett. 114 (2015) no.6, 061802]
Comparison with lattice results

FNAL/MILC $2005 G(1)=1.074(18)_{\text {stat }}(16)_{\text {syst }}$

$$
\begin{array}{rlrl}
& \text { [Fermilab Lattice and MILC Collaborations Nucl. Phys. Proc. Suppl. 140, 461 (2005)] } \\
\text { MILC } 2015 G(1) & =1.054(4)_{\text {stat }}(8)_{\text {syst }} \quad \text { [MILC Collaboration Phys.Rev. D92 (2015) no.3, 034506] } \\
\text { HPQCD } 2015 G(1) & =1.035(40) & \text { [Phys.Rev. D92 (2015) no.5, 054510] }
\end{array}
$$

Status 2016: $B \rightarrow D^{*} \mu \bar{\nu}$

ZRSR estimates of $\mathcal{F}(1)$

- complete $O\left(\alpha_{s}^{2}\right)$ (for the unit operator)
- up to $O\left(1 / m^{3}\right)$ correction

GMU2012 $\mathcal{F}(1) \approx 0.86$

Comparison with lattice results

FNAL/MILC $2014 F(1)=0.906(4)_{\text {stat }}(12)_{\text {syst }}$
[Fermilab Lattice and MILC Collaborations Phys.Rev. D89 (2014) no.11, 114504]
HPQCD prel. see talk by Christine Davies $\left(F(1)=h_{A_{1}}(1)\right)$
[HPQCD Collaboration preliminary result shown at CKM2016]

Status 2016: $B \rightarrow D^{*} \mu \bar{\nu}$

ZRSR estimates of $\mathcal{F}(1)$

- complete $O\left(\alpha_{s}^{2}\right)$ (for the unit operator)
- up to $O\left(1 / m^{3}\right)$ correction

GMU2012 $\mathcal{F}(1) \approx 0.86$
[Gambino,Mannel,Uraltsev JHEP 1210 (2012) 169]
LvD2016 $\mathcal{F}(1)<0.828 \pm 0.014$
[based on inputs from Alberti,Gambino,Healy,Nandi Phys.Rev.Lett. 114 (2015) no.6, 061802]
Comparison with lattice results

FNAL/MILC $2014 F(1)=0.906(4)_{\text {stat }}(12)_{\text {syst }}$
[Fermilab Lattice and MILC Collaborations Phys.Rev. D89 (2014) no.11, 114504]
HPQCD prel. see talk by Christine Davies $\left(F(1)=h_{A_{1}}(1)\right)$
[HPQCD Collaboration preliminary result shown at CKM2016]

What changed?

updated input values
2012

$$
\begin{aligned}
m_{b}^{\mathrm{kin}}(1 \mathrm{GeV}) & =4.6 \mathrm{GeV} \\
m_{c}^{\mathrm{kin}}(1 \mathrm{GeV}) & =1.2 \mathrm{GeV} \\
\mu_{\pi}^{2}(1 \mathrm{GeV}) & =0.4 \mathrm{GeV}^{2} \\
\mu_{G}^{2}(1 \mathrm{GeV}) & =0.3 \mathrm{GeV}^{2} \\
\rho_{D}^{3}(1 \mathrm{GeV}) & =0.15 \mathrm{GeV}^{3} \\
-\rho_{L S}^{3}(1 \mathrm{GeV}) & =0.12 \mathrm{GeV}^{3}
\end{aligned}
$$

[Gambino,Mannel,Uraltsev JHEP 1210 (2012) 169]

What changed?

updated input values

2012

$$
\begin{aligned}
m_{b}^{\text {kin }}(1 \mathrm{GeV}) & =4.6 \mathrm{GeV} \\
m_{c}^{\mathrm{kin}}(1 \mathrm{GeV}) & =1.2 \mathrm{GeV} \\
\mu_{\pi}^{2}(1 \mathrm{GeV}) & =0.4 \mathrm{GeV}^{2} \\
\mu_{G}^{2}(1 \mathrm{GeV}) & =0.3 \mathrm{GeV}^{2} \\
\rho_{D}^{3}(1 \mathrm{GeV}) & =0.15 \mathrm{GeV}^{3} \\
-\rho_{L S}^{3}(1 \mathrm{GeV}) & =0.12 \mathrm{GeV}^{3}
\end{aligned}
$$

[Gambino,Mannel,Uraltsev JHEP 1210 (2012) 169]

2016

$$
\begin{aligned}
m_{b}^{\mathrm{kin}}(1 \mathrm{GeV}) & =4.561 \pm 0.021 \mathrm{GeV} \\
m_{c}^{\mathrm{kin}}(1 \mathrm{GeV}) & =1.092 \pm 0.020 \mathrm{GeV}^{2} \\
\mu_{\pi}^{2}(1 \mathrm{GeV}) & =0.464 \pm 0.067 \mathrm{GeV}^{2} \\
\mu_{G}^{2}(1 \mathrm{GeV}) & =0.333 \pm 0.061 \mathrm{GeV}^{2} \\
\rho_{D}^{3}(1 \mathrm{GeV}) & =0.175 \pm 0.040 \mathrm{GeV}^{3} \\
-\rho_{L S}^{3}(1 \mathrm{GeV}) & =0.146 \pm 0.096 \mathrm{GeV}^{3}
\end{aligned}
$$

[Alberti,Gambino,Healey,Nandi Phys.Rev.Lett. 114 (2015) no.6, 061802]
old values exhibit $>3 \sigma$ tension, $\approx 2 \sigma$ deviation, $<1 \sigma$ agreement

Light-Cone Sum Rules: Basic Idea

- construct an artificial correlator

$$
\begin{aligned}
F_{\alpha \mu}(p, q)= & i \int \mathrm{~d}^{4} x e^{i p \cdot x}\langle 0| \mathcal{T}\left\{\bar{d} \Gamma_{\alpha} c(x), \bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b(0)|\bar{B}\rangle\right. \\
= & \frac{\langle 0| \bar{d} \Gamma_{\alpha}\left|D^{(*)}\right\rangle\left\langle D^{(*)}\right| \bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b|\bar{B}\rangle}{M_{D^{(*)}}^{2}-p^{2}}+\text { multi-body contributions } \\
& p: \text { momentum of } D^{(*)} \quad q \text { : momentum of leptons }
\end{aligned}
$$

- for q^{2} "sufficiently faw away from zero recoil" the integral is dominated by light-like distances x^{2}
- apply Operator Product Expansion on the light cone
- input: universal non-perturbative non-local matrix elements $\langle 0| \bar{d}(x) \Gamma h_{v}(0)|\bar{B}\rangle$
- parametrized as B-meson light-cone distribution amplitudes
- note: defined in HQET, subject to power corrections
- relate to $B \rightarrow D^{(*)}$ form factors and $D^{(*)}$ decay constants

Complementary Information

- complementary to ZRSR
- each form factor can be obtained individually
- complementary to Lattice and ZRSR
- by contruction the LCSRs apply at/close to maximum hadronic recoil
- can be used to anchor parametrization of the FFs for arbitrary momentum transfer
- so far not used in experimental analyses

Status 20462008

$\bar{B} \rightarrow D \mu \bar{\nu}:$

$$
\mathcal{G}\left(\omega_{\max }\right)=0.61 \pm\left. 0.11\right|_{\mathrm{SR}} \pm\left. 0.10\right|_{f_{B}} \pm\left. 0.07\right|_{f_{D}}
$$

$\bar{B} \rightarrow D^{*} \mu \bar{\nu}:$

$$
\begin{array}{rlrl}
h_{A_{1}}\left(\omega_{\max }\right) & =0.65 \pm\left. 0.12\right|_{\mathrm{SR}} \pm\left. 0.11\right|_{f_{B}} \pm\left. 0.07\right|_{f_{D^{*}}} \\
R_{1}\left(\omega_{\max }\right) & =1.32 \pm\left. 0.04\right|_{\mathrm{SR}} & & {\left[\mathrm{CLN}: R_{1}=1.22\right]} \\
R_{2}\left(\omega_{\max }\right) & =0.91 \pm\left. 0.17\right|_{\mathrm{SR}} & & {\left[C L N: R_{1}=0.84\right]}
\end{array}
$$

Uncertainty budgets:
f_{B} due to normalization of B-meson LCDA
$f_{D^{(*)}}$ due to decay constant in dispersion relation SR due to Sum Rule parameters ($\lambda_{B}, M^{2}, s_{0}, \ldots$)

Briefly: Dispersive Bounds

- dispersively relate hadronic matrix elements to vacuum-to-vacuum matrix elements

$$
\Pi^{\mu \nu} \equiv i \int \mathrm{~d}^{4} x e^{i q \cdot x}\langle 0| \mathcal{T}\left\{J^{\dagger, \mu}(x), J^{\nu}(0)\right\}|0\rangle
$$

q : momentum of $B D$ pair

- relates $\bar{B} \rightarrow D^{(*)}, \bar{B}^{*} \rightarrow D^{(*)}$, and further exclusive matrix elements with each other
- use of analytic structure of $\Pi^{\mu \nu}$ in plane of complex-valued momentumm transfer
- can be used to infer knowledge of the shape of the $\bar{B} \rightarrow D^{(*)}$ form factors as functions of momentum transfer
- inspired CLN parametrization
- crucial input: normalization of form factors at one kinematical point
- last results date from 1998, in dire need of update

Summary

- few new developments
- zero recoil sum rules still at odds with (some) lattice inputs

$$
B \rightarrow D \text { MILC } 2015 \text { at } \sim 3 \sigma \text { tension, HPQCD } 2014 \text { compatible }
$$ $B \rightarrow D^{*}$ FNAL/MILC 2015 at $\sim 5 \sigma$ tension, HPQCD prel. compatible

- light-cone sum rules provide information complementary to lattice results
- so far, not used in fits to $\bar{B} \rightarrow D^{(*)} \mu \bar{\nu}$ spectra as functions of recoil ω
- dispersive bounds used to guide CLN parametrization
- input parameters from 1998
- in desparate need of an update

University of
zumshe

Appendix

Definition of the Hadronic Matrix Elements

at order $1 / m^{2}$:

$$
\mu_{\pi}^{2}=-\frac{1}{2 M_{B}}\langle\bar{B}| \bar{h}_{v}\left(i D_{\perp}\right)^{2} h_{v}|\bar{B}\rangle, \quad \mu_{G}^{2}=-\frac{i}{4 M_{B}}\langle\bar{B}| \bar{h}_{v} \sigma^{\mu \nu}\left[i D_{\perp \mu}, i D_{\perp \nu}\right] h_{v}|\bar{B}\rangle
$$

at order $1 / \mathrm{m}^{3}$:

$$
\begin{aligned}
\rho_{D}^{3} & =+\frac{1}{4 M_{B}}\langle\bar{B}|\left[i D_{\perp \mu},\left[i(v \cdot D), i D_{\perp}^{\mu}\right]\right]|\bar{B}\rangle \\
\rho_{L S}^{3} & =-\frac{i}{4 M_{B}}\langle\bar{B}| \sigma^{\mu \nu}\left[i D_{\perp_{\mu}},\left[i(v \cdot D), i D_{\perp_{\nu}}\right]\right]|\bar{B}\rangle
\end{aligned}
$$

Zero-Recoil Sum Rule

OPE Representation

- pole(s) at $\varepsilon=0$
- parasitic branch cut from $-2 m_{c} \rightarrow-\infty$
- parasitic branch cut from $+2 m_{b} \rightarrow+\infty$
- separation scale $\mu \approx \varepsilon_{M}=0.75 \mathrm{GeV}$ chosen for large distance from parasitic branch cuts, while still large enough to separate hard from soft modes in the OPE

Hadronic Representation

- pole for D at $\varepsilon=0$
- pole for D^{*} at $\varepsilon=M_{D^{*}}-M_{D}-i \ldots$
- branch cuts $(D+n \times \pi, \ldots)$ from $n \times M_{\pi} \rightarrow+\infty$

Light-Cone Sum Rules with B-meson LCDAs

Input parameters

- $\lambda_{B}=460 \pm 110 \mathrm{MeV}$: inverse moment of the two-particle LCDA
- $M^{2}=3 \ldots 6 \mathrm{GeV}^{2}$: Borel parameter window
$-s_{0}^{D^{(*)}}=6.0(8.0) \mathrm{GeV}^{2}$: hadronic threshold

