$9^{\rm th}$ International Workshop on CKM-UT CKM~2016

Mumbai, 28 Nov -2 Dec 2016

Mini-review on R(D) and R(D*) at B-Factories

Marcello Rotondo Laboratori Nazionali di Frascati

On behalf of BaBar and Belle

INFN

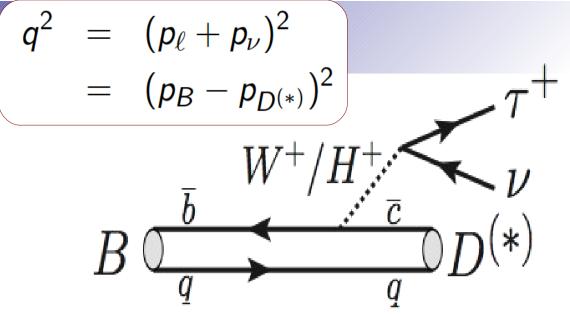
M.Rotondo

Semitauonic B decays at B-Factories

- First observation of the $B^0 \rightarrow D^{*2} \tau v PRL 99 (2007) 191807$
 - Belle, Inclusive tagging technique
- Observation of the B \rightarrow D*-TV and evidence for B \rightarrow DTV PRL100(2008)021801
 - BaBar, Hadronic tag
- Observation of the $B^+ \rightarrow D^{*0-TV}$ and evidence for $B^+ \rightarrow D^0TV$ PRD82(2010)072005
 - Belle, Inclusive tag
- Evidence for an excess of $B \rightarrow D(*)$ -TV decays PRL109 (2012)101802
 - Babar, Hadronic tag, full BaBar statistics + improved tag first direct measurement of R(D) and R(D*)
- Measurement of R(D) and R(D*), PRD92(2015)072014
 - Belle, Hadronic tag
- Measurement of R(D) and R(D*), PRD94(2016) 072007
 - Belle, Semileptonic tag
- Measurement of R(D*) and t polarization, arxiv 1698.06391
 - Belle, Hadronic tag

Semitauonic B decays at B-Factories

- First observation of the $B^0 \rightarrow D^{*2} \tau v PRL 99 (2007) 191807$
 - Belle, Inclusive tagging technique
- Observation of the B \rightarrow D*-TV and evidence for B \rightarrow DTV PRL100(2008)021801
 - BaBar, Hadronic tag
- Observation of the $B^+ \rightarrow D^{*0-TV}$ and evidence for $B^+ \rightarrow D^0TV$ PRD82(2010)072005
 - Belle, Inclusive tag
- Evidence for an excess of $B \rightarrow D(*)$ -TV decays PRL109 (2012)101802
 - Babar, Hadronic tag, full BaBar statistics + improved tag first direct measurement of R(D) and R(D*)
- Measurement of R(D) and R(D*), PRD92(2015)072014
 - Belle, Hadronic tag
- Measurement of R(D) and R(D*), PRD94(2016) 072007
 - Belle, Semileptonic tag
- Measurement of R(D*) and t polarization, arxiv 1698.06391
 - Belle, Hadronic tag


CKM 2016

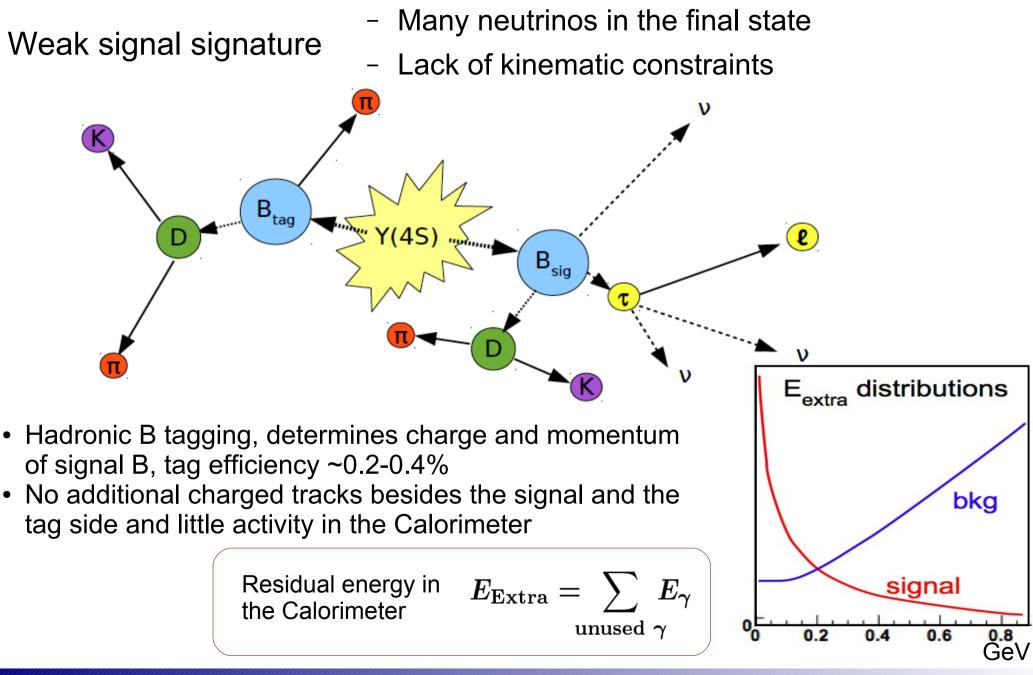
Talk by K. Adamczyk

 $B \rightarrow D^{(*)} \tau v$

- It is not a rare decay: BF~1-2%
- 3-body decay: many observables sensitive to NP can be exploited

Signal

Theoretically Clean

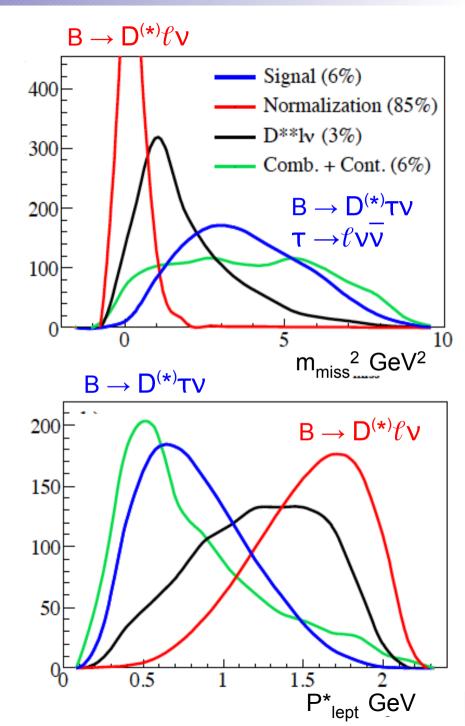

Cancellation of $|V_{cb}|$ and Form Factor uncertainties (partially: the helicitysuppressed amplitude estimated from HQET)

Normalization (largest background)

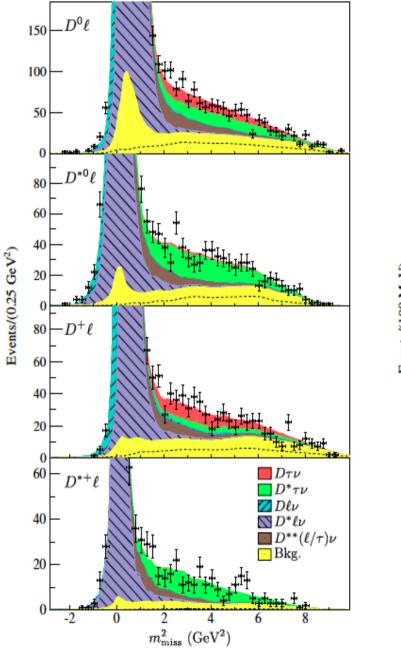
- Experimentally clean with leptonic tau decays
 - $\mathcal{B}(\tau \to \mu \nu \overline{\nu}), \mathcal{B}(\tau \to e \nu \overline{\nu}) \approx 17\%$
- Identical visible final state and direct access to R(D) and R(D*) ratios

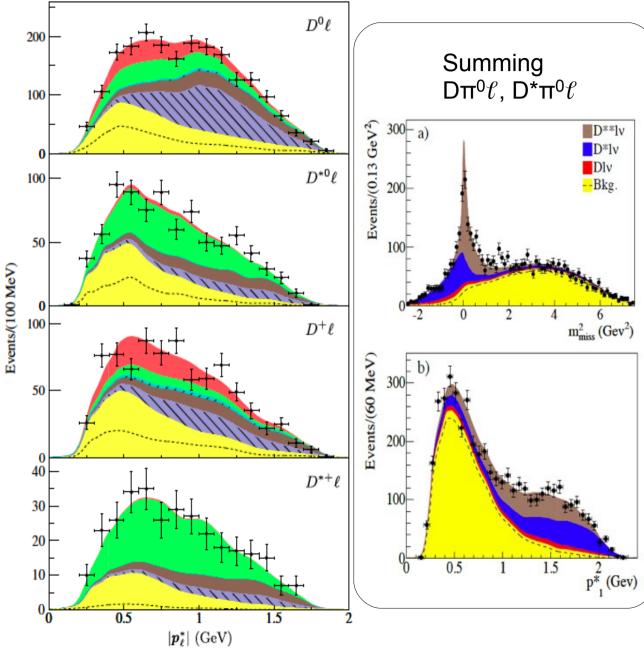
Tagging at BFactories

CKM 2016


Fit $B \rightarrow D^{(*)}\tau v$: Yields Extraction PRL109,101802(2012) PRD 88,072012(2013)

CKM 2016


- Simultaneous un-binned M.L. Fit
 - 4 signal samples $D^0\ell$, $D^{*0}\ell$, $D^+\ell$, D^{*+}
 - 2 dimensional distributions:


$$m_{miss}^2 = (p_{e^+e^-} - p_{tag} - p_{D^{(*)}} - p_{\ell})^2$$

 p_{ℓ}^* in the B_{sig} rest-frame

• Signal extracted together with a control sample of $B \rightarrow D^{**}$ selected by the presence of a π^0

Results for $B \rightarrow D(*)\tau v$

CKM 2016

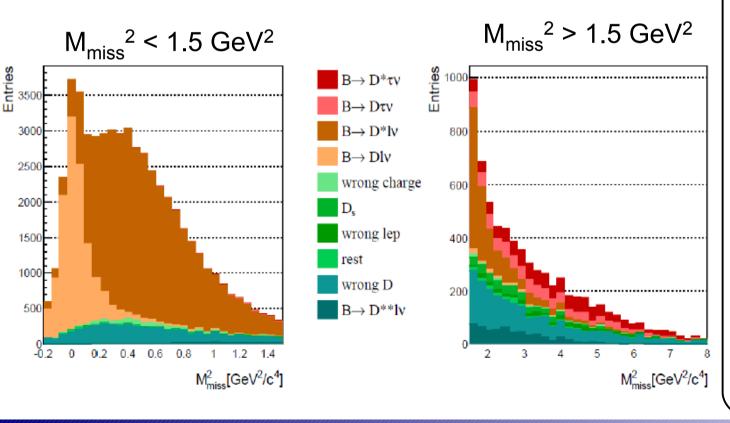
Results & Systematics

 $\mathcal{R}(D) = 0.440 \pm 0.058 \pm 0.042$

 $\mathcal{R}(D^*) = 0.332 \pm 0.024 \pm 0.018$

 3.4σ from SM

CKM 2016


- Dominant systematics
 - MC statistics

- Factor $f_{D^{**}}$ that links the D** yields in the $D(^*)\ell\pi^0$ and $D(^*)\ell$ samples
- Uncertainty due to D(*)ππ obtained by adding a further component to the fit
- Corrections to fixed BB bkg and continuum

Source of uncertainty	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$
Additive uncertainties PDFs	%	%
MC statistics	4.4	2.0
$\bar{B} \rightarrow D^{(*)}(\tau^-/\ell^-)\bar{\nu}$ FFs	0.2	0.2
$D^{**} \to D^{(*)}(\pi^0/\pi^{\pm})$	0.7	0.5
$\mathcal{B}(\bar{B} \to D^{**}\ell^- \bar{\nu}_\ell)$	0.8	0.3
$\mathcal{B}(\bar{B} \to D^{**} \tau^- \bar{\nu}_{\tau})$	1.8	1.7
$D^{**} \rightarrow D^{(*)} \pi \pi$	2.1	2.6
Cross-feed constraints		
MC statistics	2.4	1.5
$f_{D^{**}}$	5.0	2.0
Feed-up/feed-down	1.3	0.4
Isospin constraints	1.2	0.3
Fixed backgrounds		
MC statistics	3.1	1.5
Efficiency corrections	3.9	2.3
Multiplicative uncertainties		
MC statistics	1.8	1.2
$\bar{B} \rightarrow D^{(*)}(\tau^-/\ell^-)\bar{\nu}$ FFs	1.6	0.4
Lepton PID	0.9	0.9
π^0/π^{\pm} from $D^* \to D\pi$	0.1	0.1
Detection/Reconstruction	0.7	0.7
$\mathcal{B}(\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau)$	0.2	0.2
Total syst. uncertainty	9.6	5.6
Total stat. uncertainty	13.1	7.1
Total uncertainty	16.2	9.0

Signal reconstruction

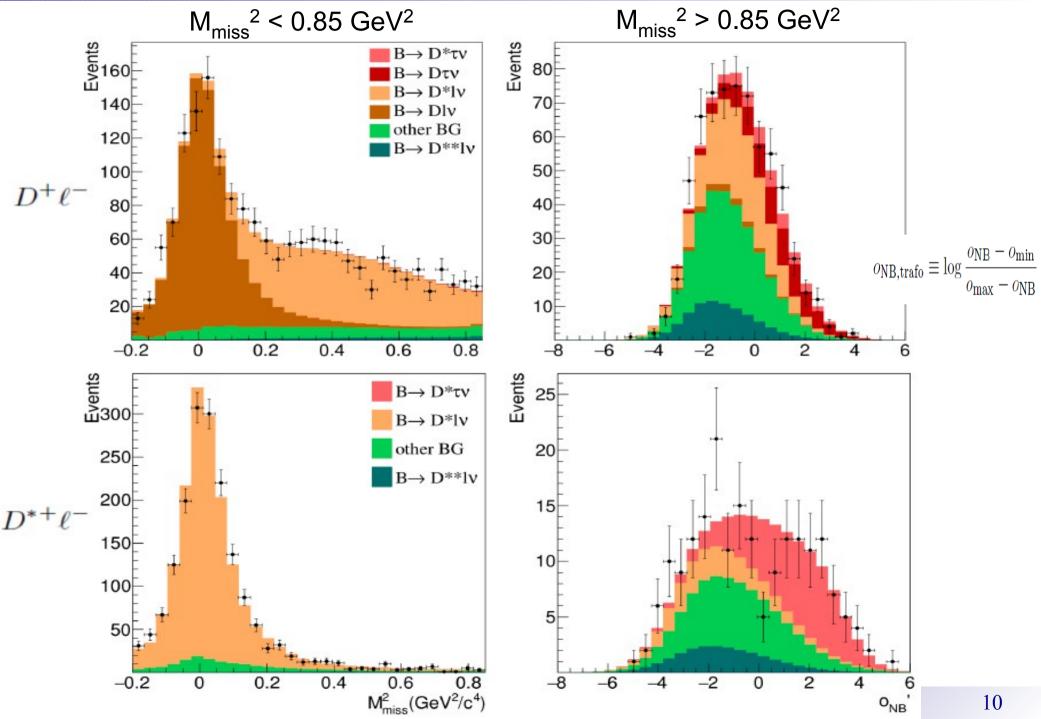
- Four signal samples $D^0\ell$, $D^{*0}\ell$, $D^+\ell$, $D^{*+}\ell$
 - Uses the Hadronic Tagging
 - Zero charge of $B_{tag} + B_{sig}$
 - No further tracks and π^0 in barrel/forward/backward ECL region

 $M_{miss}^{2} = (p_{e+e-} - p_{Btag} - p_{D(*)} - p_{\ell})^{2}$ $q^2 = (-p_{Btag} - p_{D(*)})^2$

PRD92 (2015) 072014

Fit Strategy

M_{miss}² in low M_{miss}² sample constraints normalization and crossfeed.


Train a NN to distinguish tau signal and (mainly) D** background in high M_{miss}² sample.

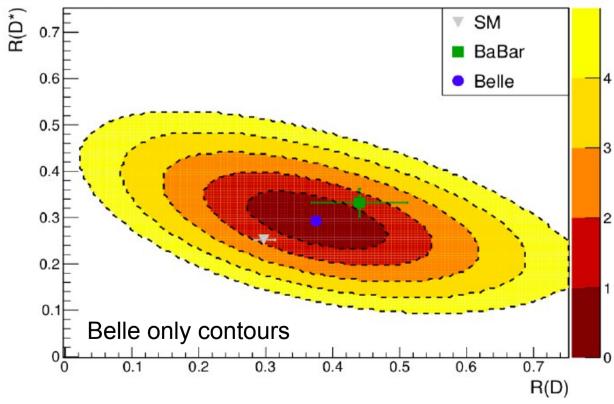
Fit the NN distribution in high M_{miss}² to get the signal

Fit results

arXiv:1507.03233

Results

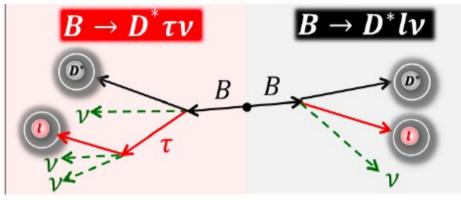
PRD92 (2015) 072014



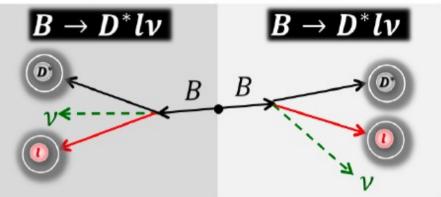
	R(D)	R(D*)	
Belle SM [*]	$0.375 \pm 0.064 \pm 0.026$ 0.300 ± 0.008	$0.293 \pm 0.038 \pm 0.038$ 0.252 ± 0.003	
∞	1.4σ	1.8σ	J

No tension with either BaBar or SM

Comparison with SM calculation and BaBar


measurement

	R(D)[%]	$R(D^*)[\%]$	Correlation
$D^{(*(*))}\ell\nu$ shapes	4.2	1.5	0.04
D ^{**} composition	1.3	3.0	-0.63
Fake D yield	0.5	0.3	0.13
Fake ℓ yield	0.5	0.6	-0.66
D_s yield	0.1	0.1	-0.85
Rest yield	0.1	0.0	-0.70
Efficiency ratio f^{D^+}	2.5	0.7	-0.98
Efficiency ratio f^{D^0}	1.8	0.4	0.86
Efficiency ratio $f_{\rm eff}^{D^{*+}}$	1.3	2.5	-0.99
Efficiency ratio $f_{\text{eff}}^{D^{*0}}$	0.7	1.1	0.94
CF double ratio g^+	2.2	2.0	-1.00
CF double ratio g^0	1.7	1.0	-1.00
Efficiency ratio $f_{\rm wc}$	0.0	0.0	0.84
$M_{\rm miss}^2$ shape	0.6	1.0	0.00
$o'_{\rm NB}$ shape	3.2	0.8	0.00
Lepton PID efficiency	0.5	0.5	1.00
Total	7.1	5.2	-0.32


Belle result on R(D*) with Semileptonic Tag

Semitauonic signal-side decay and semileptonic tag-side.

Numerator in $\mathcal{R}(D^*)$

More efficient than the hadronic tag But less information about B_{tag} due to neutrino and it is not possiile to access the full kinematics Normalization events are double semileptonic decays.

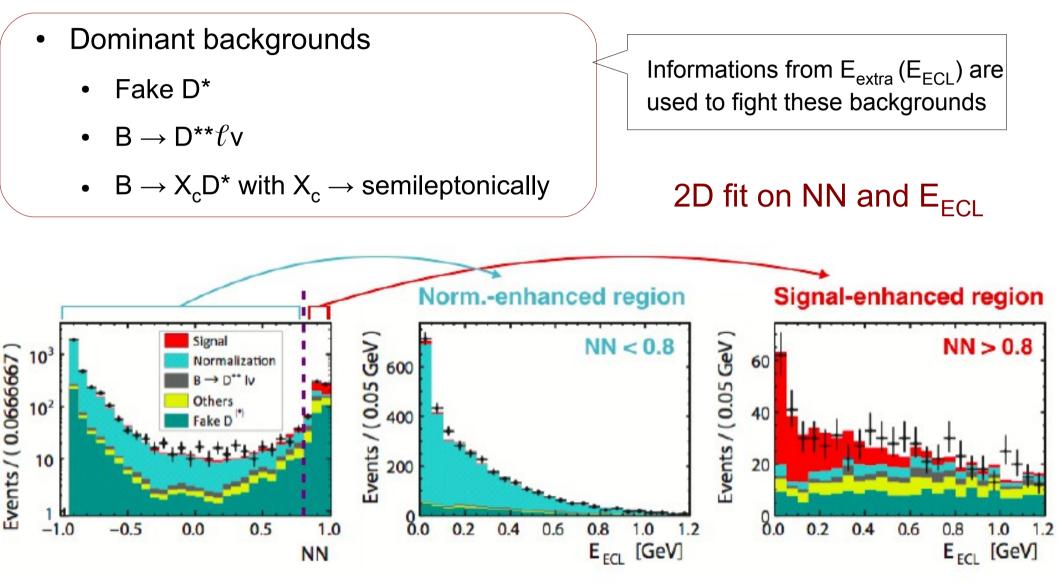
Denominator in $\mathcal{R}(D^*)$

D*+ reconstruction

- both $D^0\pi^+$ and $D^+\pi^0$
- D⁰ in 10 modes (~37%)
- D⁺ 5 modes (~22%)

Tag semileptonic B-decay: D* with a lepton

M.Rotondo

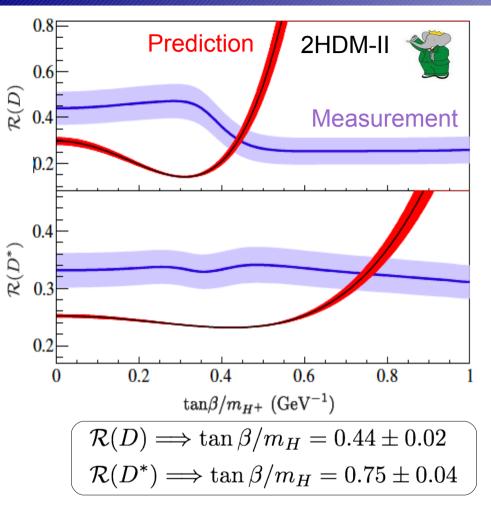

$$\cos \theta_{B-D^*\ell} \equiv \frac{2E_{\text{beam}}E_{D^*\ell} - m_B^2 - M_{D^*\ell}^2}{2|\vec{p}_B| \cdot |\vec{p}_{D^*\ell}|}$$

Signal yield extraction

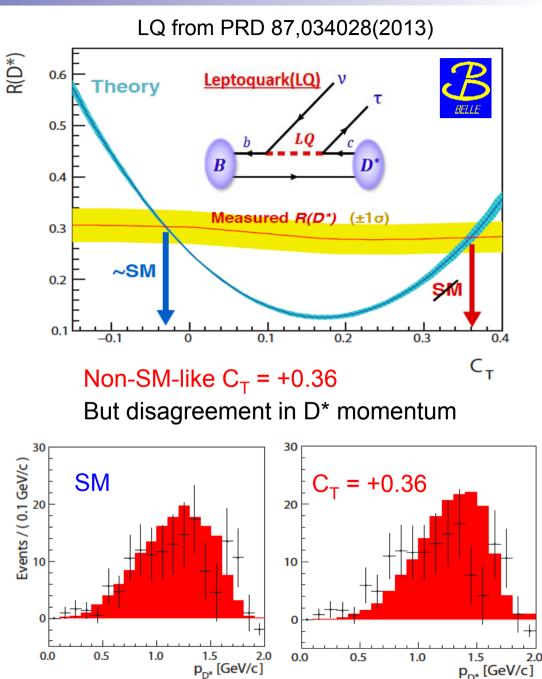
PRD94(2016) 072007

• Separate correctly reconstructed signal and normalization events using a NN (NeuroBayes) with M_{miss}^2 and total visible energy and $\cos\theta^{sig}_{BY}$

Results and systematics

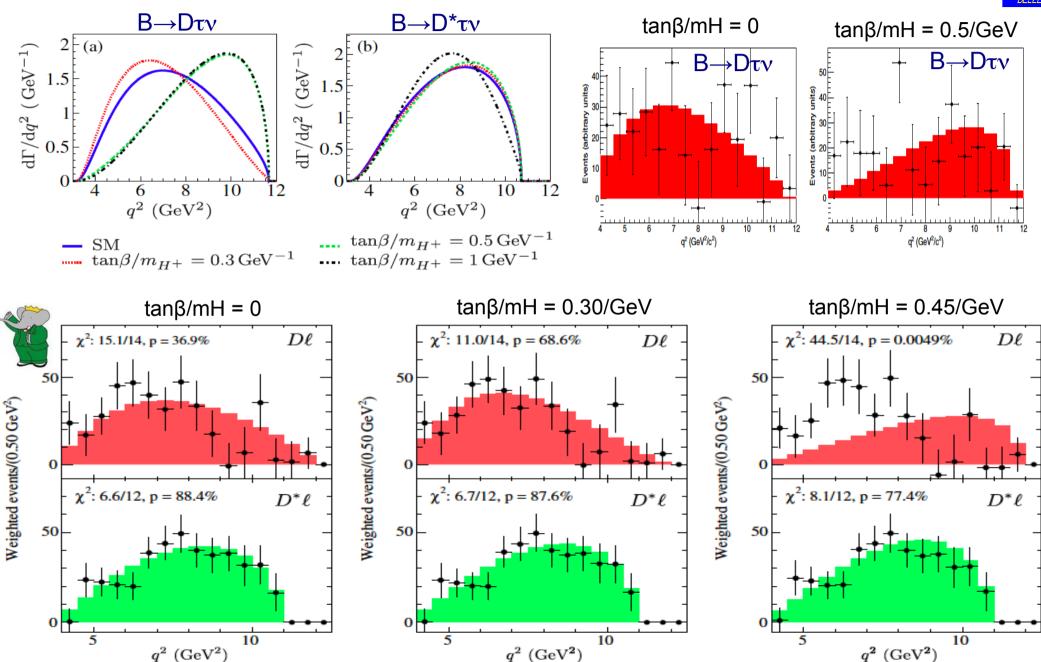


$$\mathcal{R}(D^*) = 0.302 \pm 0.030(\text{stat}) \pm 0.011(\text{syst})$$


Central value close to Belle hadronic Tag result Precision improved over Belle and LHCb

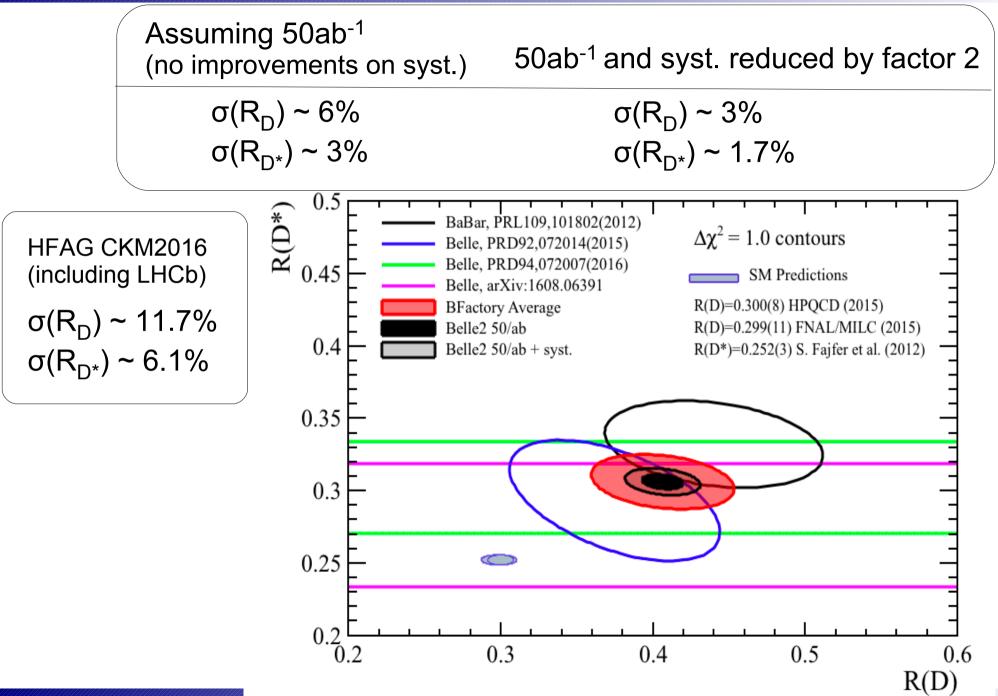
	$\mathcal{R}(D^*)$ [%]		
Sources	$\ell^{ m sig}=e,\mu$	$\ell^{ m sig}=e$	$\ell^{ m sig}=\mu$
MC statistics for PDF shape	2.2%	2.5%	3.9%
PDF shape of the normalization	$^{+1.1}_{-0.0}\%$	$^{+2.1}_{-0.0}\%$	$^{+2.8}_{-0.0}\%$
PDF shape of $B \to D^{**} \ell \nu_{\ell}$	$^{+1.0}_{-1.7}\%$	$^{+0.7}_{-1.3}\%$	$^{+2.2}_{-3.3}\%$
PDF shape and yields of fake $D^{(*)}$	1.4%	1.6%	1.6%
PDF shape and yields of $B \to X_c D^*$	1.1%	1.2%	1.1%
Reconstruction efficiency ratio $\varepsilon_{\rm norm}/\varepsilon_{\rm sig}$	1.2%	1.5%	1.9%
Modeling of semileptonic decay	0.2%	0.2%	0.3%
${\cal B}(au^- o \ell^- ar u_\ell u_ au)$	0.2%	0.2%	0.2%
Total systematic uncertainties	$^{+3.4}_{-3.5}\%$	$^{+4.1}_{-3.7}\%$	$^{+5.9}_{-5.8}\%$

Constraints on New Physics


- The combination of R(D) and R(D*) excludes the 2HDM-II
- More general 2HDM-III can explain the data (more parameters)

Beyond R(D) and R(D*): q²

• The q² for $B \rightarrow D\tau v$ spectrum could be impacted by NP contributions

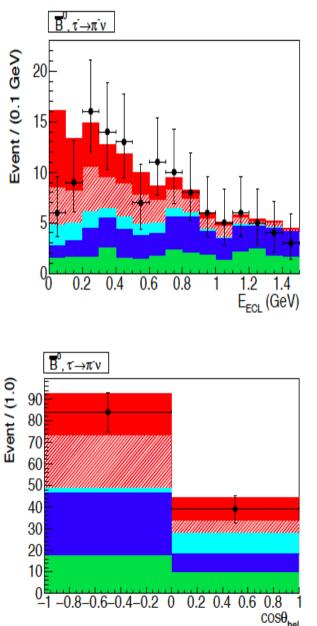

Prospects at Belle-II

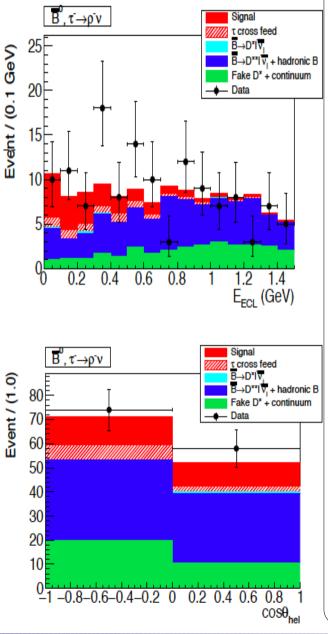
Systematics from Belle Hadronic Tag analysis (example)

	R(D)[%]	$R(D^*)[\%]$	Correlation
$D^{(*(*))}\ell\nu$ shapes	4.2	1.5	0.04
D** composition	1.3	3.0	-0.63
Fake D yield	0.5	0.3	0.13
Fake ℓ yield	0.5	0.6	-0.66
D_s yield	0.1	0.1	-0.85
Rest yield	0.1	0.0	-0.70
Efficiency ratio f^{D^+}	2.5	0.7	-0.98
Efficiency ratio f^{D^0}	1.8	0.4	0.86
Efficiency ratio $f_{eff}^{D^{*+}}$	1.3	2.5	-0.99
Efficiency ratio $f_{\rm eff}^{D^{*0}}$	0.7	1.1	0.94
CF double ratio g^+	2.2	2.0	-1.00
CF double ratio g^0	1.7	1.0	-1.00
Efficiency ratio $f_{\rm wc}$	0.0	0.0	0.84
$M_{\rm miss}^2$ shape	0.6	1.0	0.00
$o'_{\rm NB}$ shape	3.2	0.8	0.00
Lepton PID efficiency	0.5	0.5	1.00
Total	7.1	5.2	-0.32

- Currently measurements are dominated by statistical uncertainty
- Current total statistical uncer.: 12% on R(D) and 6% on R(D*) → % level at Belle-II
 - Systematics uncertainties related to the limited MC statistics: **fast MC**
 - Understand D** and double-charm background: need more measurements
 - Difference between data and MC are assigned as systematics and can be reduced: statistics of control samples goes with luminosity

Belle-2 with 50ab⁻¹


Future on semi-tauonic decays


- Persistent discrepancy at 4σ level with the SM prediction on R(D) & R(D*)
 - Belle measurements are closer to the SM
- Bright future at Belle-II on semi-tauonic decays
 - Exploiting both leptonic and hadronic tau decays, with different tagging techniques
 - Uncertainties on R(D)-R(D*) can be reduced at the % level
 - Spectra are crucial and can be measured with high accuracy
 - Lepton polarization, q² spectrum, D* energy, FB asymmetry...
 - Decays that involve b→u transitions: recently Belle Br(B → π τ v) < 2.5 x 10⁻⁴
- Possibility to access other decays:
 - Semitauonics with $B \rightarrow D^{**} \tau v$
 - Running at Y(5S) it could be possible to access $B_s \rightarrow D_s(*)\tau v$

Backup

Result for R(D*) and tau polarization

Projections for the B⁰

Dominant background

- Fake D* from sidebands
- Hadronic B decays with multipion-emissions
 - Control sample with additional tracks
 - Yield are floated in the fit

Signal		
	(Signal)	(τ cross feed)
$(ar{B}^0,\pi^- u_ au)$	68.1 ± 8.5	82 ± 10
$(ar{B}^0, ho^- u_ au)$	51.1 ± 6.4	17.0 ± 2.1
$(B^-,\pi^- u_ au)$	29.7 ± 3.7	30.8 ± 3.8
$(B^-, ho^- u_ au)$	21.9 ± 2.7	8.3 ± 1.0

M.Rotondo

$R(D^*)$ with hadronic tag and τ polarization

• Helicity angle of tau is sensitive to polarization \mathcal{P}_{τ}

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\text{hel}}} = \frac{1}{2} \left(1 + \boldsymbol{\alpha} \cdot \boldsymbol{\mathcal{P}}_{\tau} \cos\theta_{\text{hel}} \right)$$

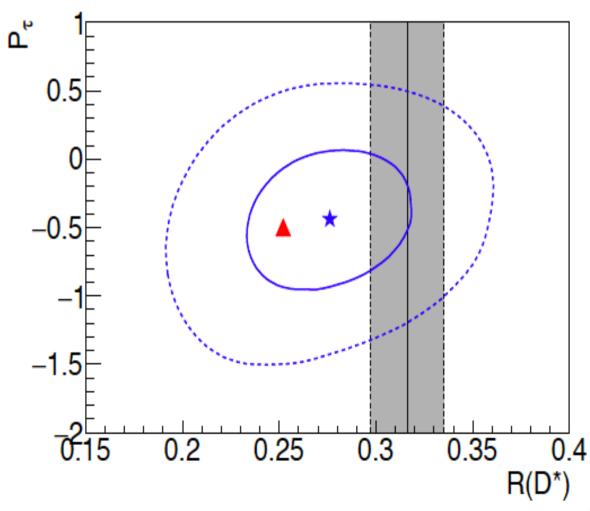
- 4-momentum of B_{sig} determined by the hadronic tag
- Two-body hadronic τ decays

•
$$\tau \rightarrow h\nu$$
, $h = \pi^-, \rho^- (\rightarrow \pi^- \pi^0)$

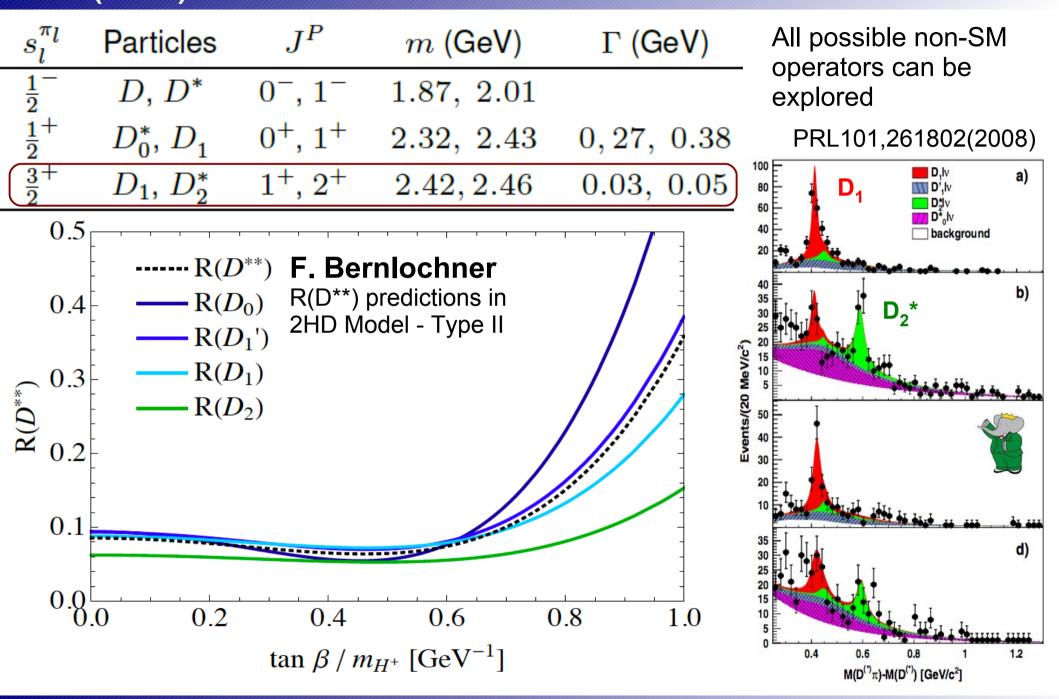
$$(\tau \text{ rest frame})$$

 θ_{hel}
 w
 W
 B_{sig}
 D^*

• $\alpha = \begin{cases} 1 & \text{for } \tau \to \pi^- \nu \text{ (pseudo scalar meson)} \\ 0.45 & \text{for } \tau \to \rho^- \nu \text{ (vector meson)} \end{cases}$


- Simultaneous fit of eight distributions of E_{ECL}
 - B^0 and B^+ πv and ρv Forward backward $\cos \theta_{hel}$

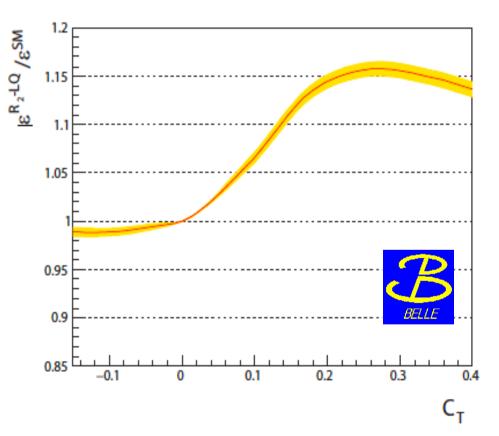
Results on R(D^{*}) and \mathcal{P}_{τ}


$$R(D^*) = 0.276 \pm 0.034 (\text{stat.})^{+0.029}_{-0.026} (\text{syst.}),$$
$$P_{\tau} = -0.44 \pm 0.47 (\text{stat.})^{+0.20}_{-0.17} (\text{syst.}).$$

- R(D*) consistent with SM prediction and other measurements
- First measurement of P_τ: consistent with SM
 - -0.497 ± 0.014

Tanaka, Watanabe, PRD87,034028 (2013)

R(D**

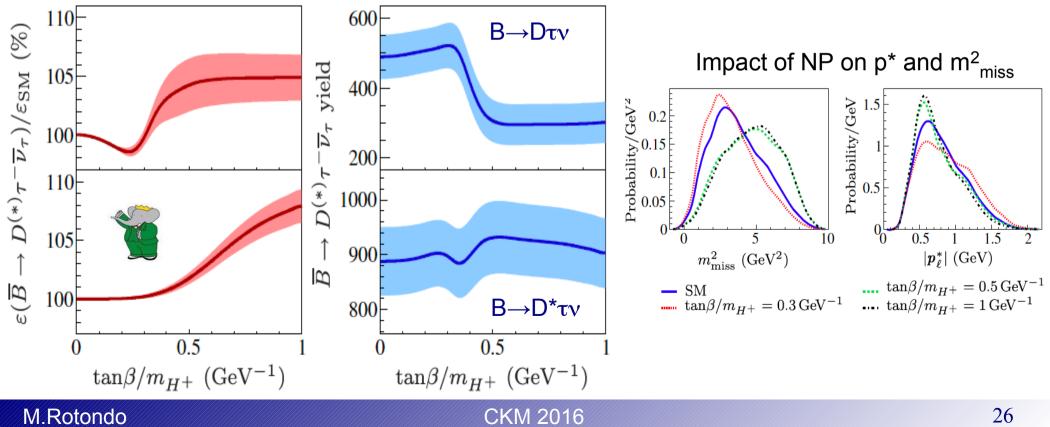


CKM 2016

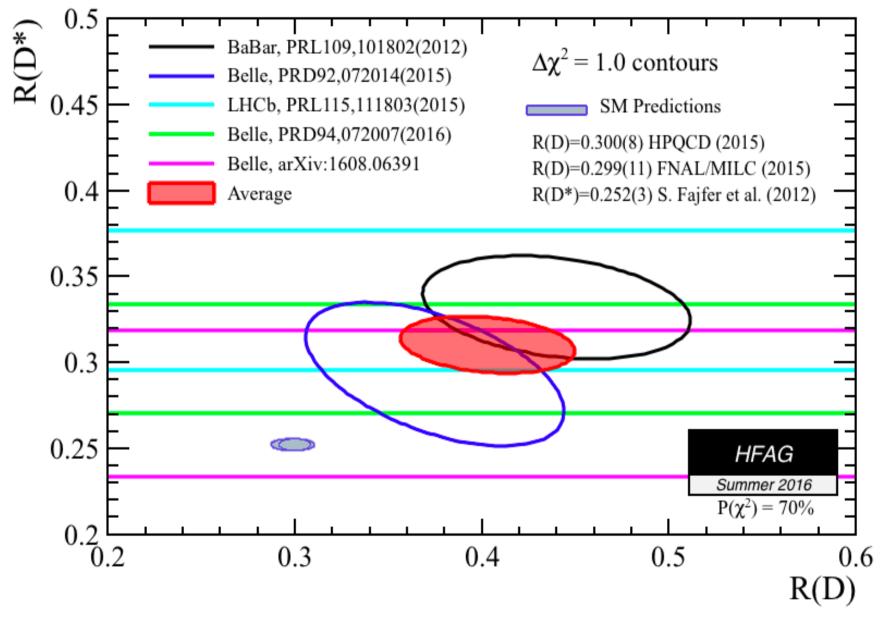
Can we explain the excess of events?

- For any assumed model and choice of parameters, we have to compute the efficiency and the impact on the kinematic shapes which affect the signal yields
- LeptoQuarks models (unified description of leptons and quarks)
 - B is sensitive to the tensor operator
 - R₂-type LQ are good candidate for compatibility test

PRD 87,034028(2013), PRD88,094012(2013)

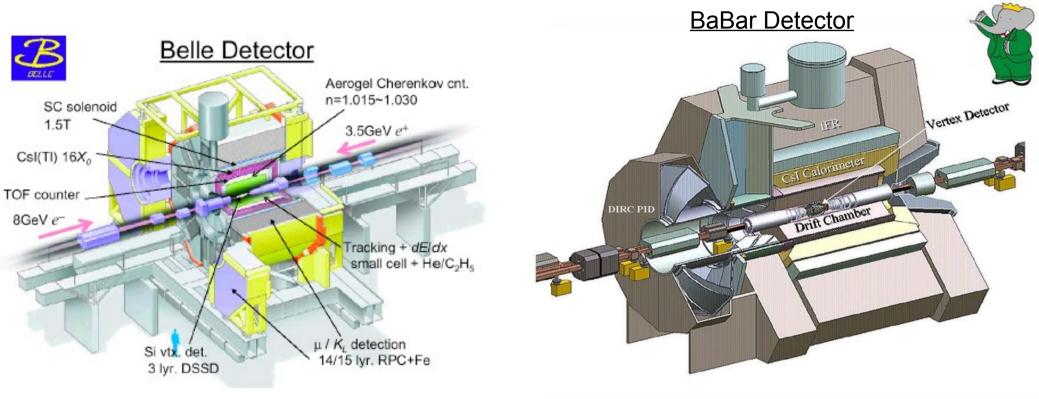


Can we explain the excess of events?


- For any assumed model and choice of parameters, we have to compute the efficiency and the impact on the kinematic shapes which affect the signal yields
- For example Type II 2HDM (now disfavored) a scalar charged Higgs affects only H_s

$$H_{\rm S}^{\rm 2HDM} \approx H_{\rm S}^{\rm SM} \times \left(1 - \frac{\tan^2\beta}{m_{H^+}^2} \frac{q^2}{1 \mp m_c/m_b}\right)$$

2 for
$$B \rightarrow D\tau v$$
 & + for $B \rightarrow D^* \tau v$



CKM16 HFAG average of R(D) and R(D*)

~4.0 σ combined deviation from the SM including correlations

Experiments: B-Factories

@ KEK Japan: 1999-2009

@ SLAC: 1999-2008

B-Factories: hermetic detectors, low background, access (mainly) at B^{0/+}

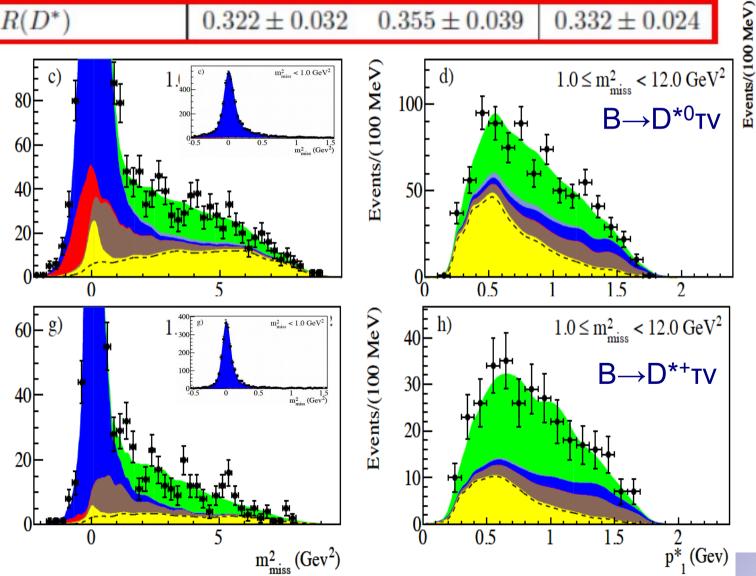
About $(771 + 467)x10^{6}$ e⁺e⁻ Y(4S) BB events in the Belle+BaBar data Belle and KEK is being upgraded

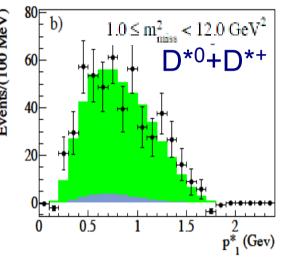
Belle-II aims to collect 50ab⁻¹ by 2024

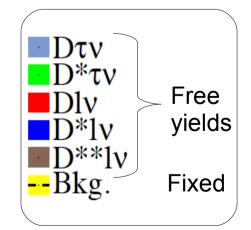
M.Rotondo

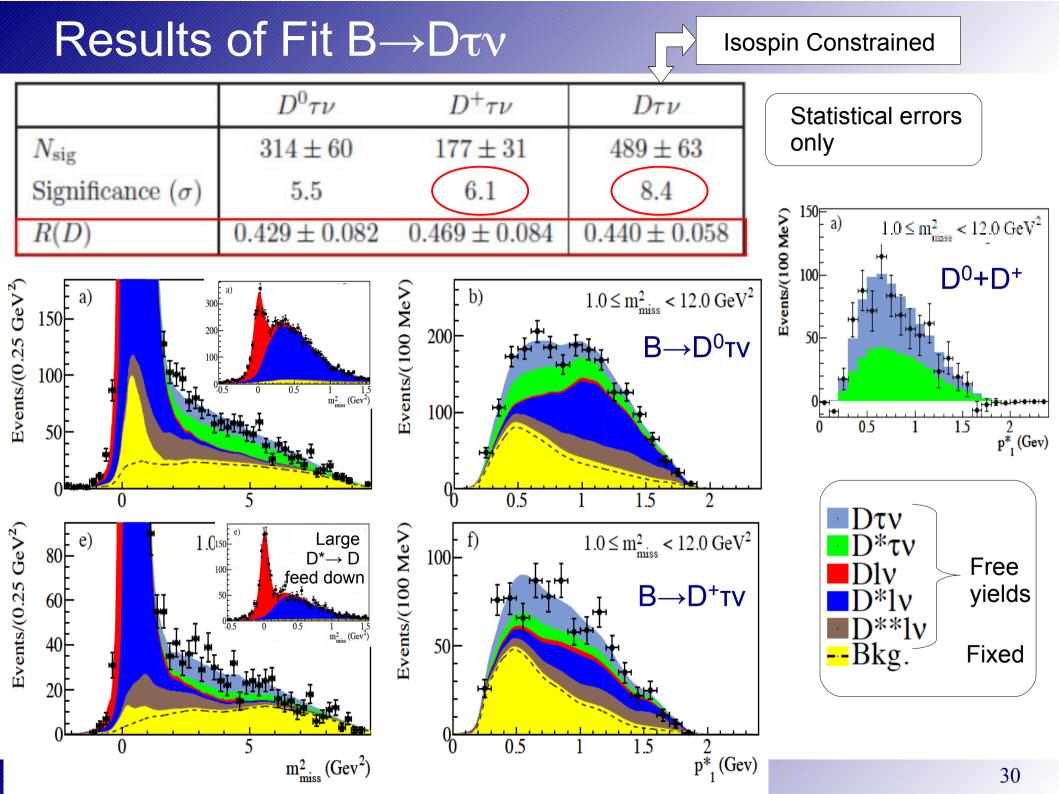
Results of Fit $B \rightarrow D^* \tau v$

Events/(0.25 GeV²)

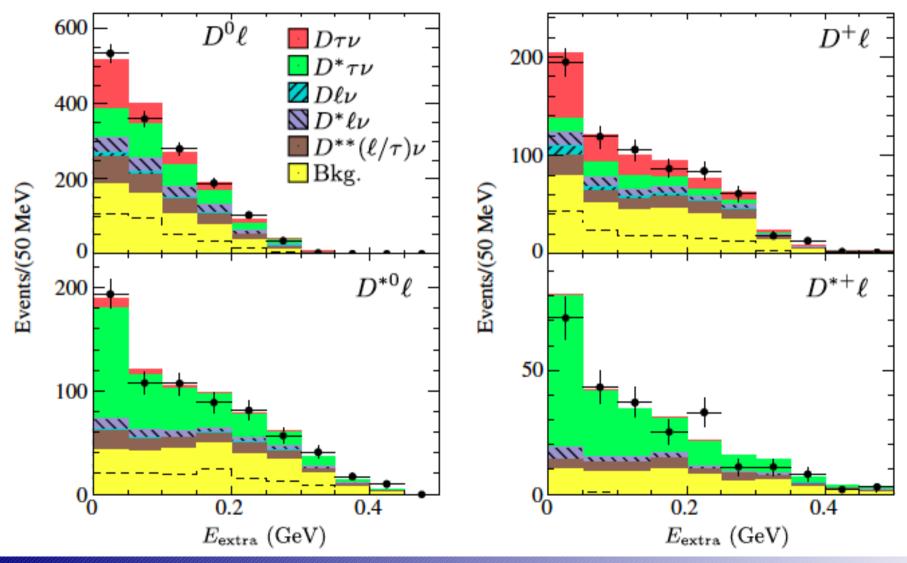

Events/(0.25 GeV²)


Isospin Constrained


only

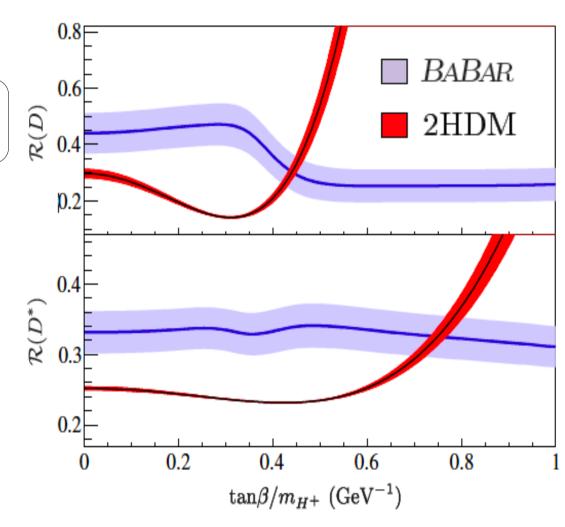

Statistical errors

	$D^{*0}\tau\nu$	$D^{*+}\tau\nu$	$D^* \tau \nu$
$N_{ m sig}$	639 ± 62	245 ± 27	888 ± 63
Significance (σ)	11.3	11.6	16.4
$R(D^*)$	0.322 ± 0.032	0.355 ± 0.039	0.332 ± 0.024



Signal Peak in E_{extra}

- E_{extra} not used in the fit
- Rescaled to the results of the fit: $M_{miss}^2 > 1.5 \text{ GeV}^2$ (signal enhanced)


M.Rotondo

Can we explain the excess events?

- We estimate the effect of 2HDM accounting for the difference in efficiency and its uncertainty
- The data match Type II 2HDM at

 $\mathcal{R}(D) \Longrightarrow \tan \beta / m_H = 0.44 \pm 0.02$ $\mathcal{R}(D^*) \Longrightarrow \tan \beta / m_H = 0.75 \pm 0.04$


- The combination of R(D) and R(D*) excludes the Type II 2HDM in the full tanβ-m_H parameter space (with m_H>10 GeV) with a probability >99.8%
- More general 2HDM can explain the data

• Low m_H range ($m_H^{<\sim}350$ GeV) already excluded by $B \rightarrow X_s \gamma$ data!

Signal reconstruction

- Four signal samples $D^0\ell$, $D^{*0}\ell$, $D^+\ell$, $D^{*+}\ell$
- No overlap between B_{tag} and B_{sig}
- Zero charge of B_{tag} + B_{sig}
- No further tracks and π^0 in barrel/forward/backward ECL region

 $M_{miss}^{2} = (p_{e+e-} - p_{Btag} - p_{D(*)} - p_{\ell})^{2}$ q² = (- p_{Btag} - p_{D(*)})²

arXiv:1507.03233

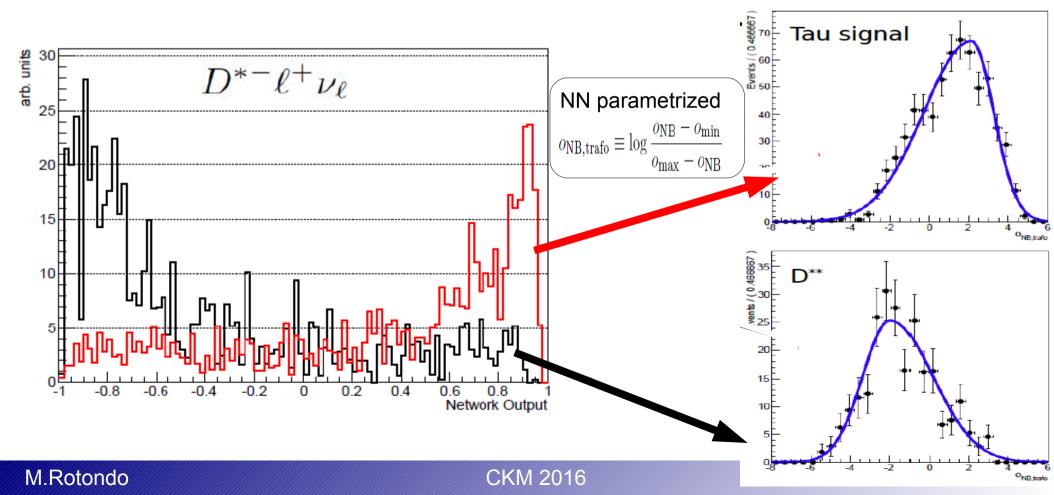
Fit Strategy

M_{miss}² in low M_{miss}² sample constraints normalization and crossfeed.

Train a NN to distinguish tau signal and (mainly) D** background in high M_{miss}² sample.

Fit the NN distribution in high M_{miss}² to get the signal

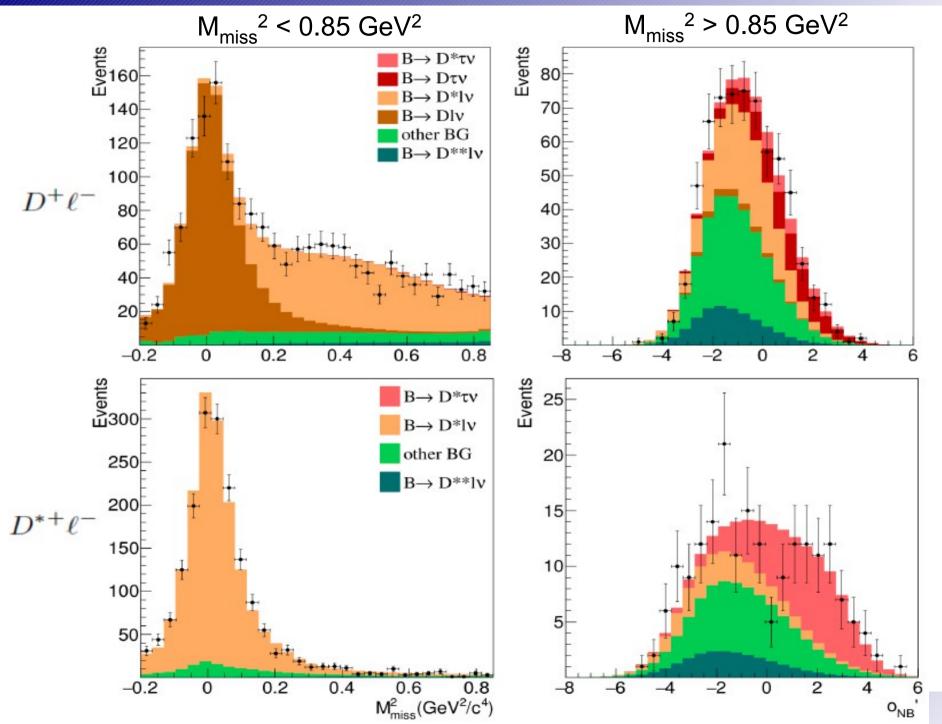
Neural Network


- One N per reconstruction sample
 - Signal: tau signal
 - Background: D**, wrong charge CF, mis-ID lepton, D_s, rest

Input variables:

- M²_{miss}
- E_{ECL} : sum of energies of clusters not assigned to B_{sig} or $B_{tag} \rightarrow M$ ost powerful variable

T.Kuhr FPC2015

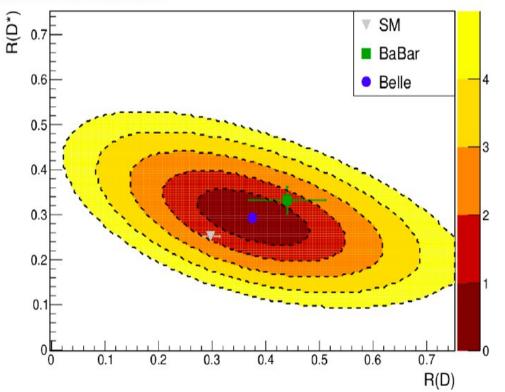

- Momentum transfer q² and lepton momentum p_{ℓ}^{*} \rightarrow Correlated with $M^{2}_{_{miss}}$
- Number of unassigned π^0 with $|S_w| < 5$
- Cos of angle between D^(*) momentum and vertex direction
- Decay channel identifiers

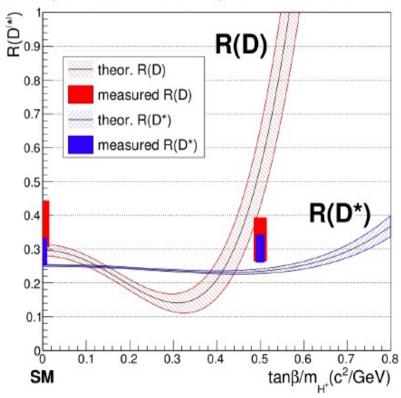
Fit results

arXiv:1507.03233

35

Results


arXiv:1507.03233

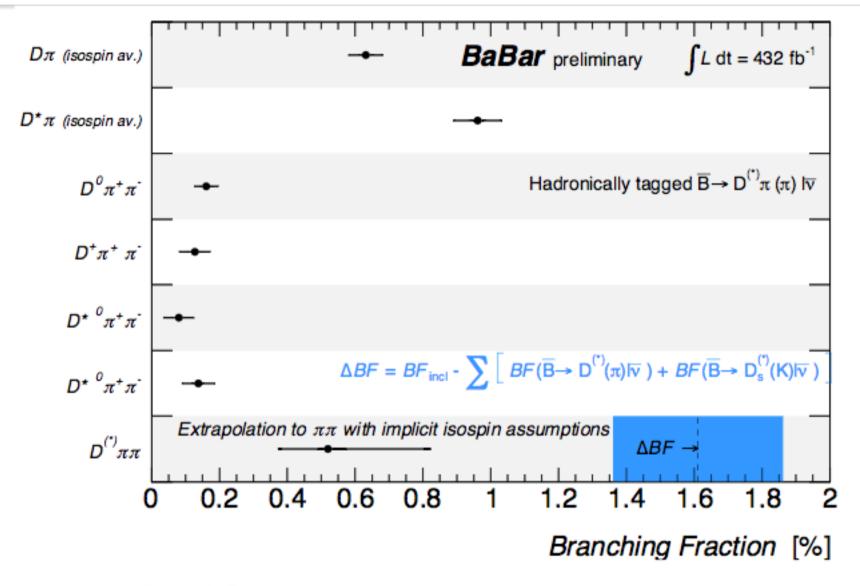

	R(D)	R(D*)
Belle SM [*]	0.375 ± 0.064 ± 0. 0.300 ± 0.08	026 0.293 ± 0.038 ± 0.038 0.252 ± 0.003
∞	1.4σ	1.8σ

Consistent with BaBar and SM

Comparison with SM calculation and BaBar measurement

Fit is repeated with pdf generated from 2HDM type II MC with $\tan \beta / m_{H^+} = 0.5 \, {\rm c}^2 / {\rm GeV}$

The gap problem


M.Rotondo

charm state X _c	$\mathcal{B}(B \to X_c \ell \bar{\nu})$ [%]
D	2.29 ± 0.09
D*	5.43 ± 0.17
$\sum D^{(*)}$	7.71 ± 0.19
$D_0^* o D\pi$	0.41 ± 0.08
$D_1^* o D^*\pi$	0.45 ± 0.09
$D_1 o D^*\pi$	$\textbf{0.43} \pm \textbf{0.03}$
$D_2^* ightarrow D^{(*)} \pi$	$\textbf{0.41} \pm \textbf{0.03}$
$\sum D^{**} o D^{(*)} \pi$	1.70 ± 0.12
$D_s^{(*)-}K^+$	0.06 ± 0.01
$D\pi$	0.66 ± 0.08
$D^*\pi$	0.87 ± 0.10
$\sum D^{(*)}\pi$	1.53 ± 0.13
$\sum D^{(*)} + \sum D^{**} \rightarrow D^{(*)}\pi + D^{(*)-}_{s}K^{+}$	9.47 ± 0.22
$\sum D^{(*)} + \sum D^{(*)}\pi + D^{(*)-}_{s}K^{+}$	9.30 ± 0.23
inclusive X _c	10.98 ± 0.14

Inclusive – Σexclusive = (1.51 ± 0.26) %

From T.Lueck @EPS2015

Status of the "gap"

• gap reduced from $\approx 7\sigma$ to $\approx 3\sigma$

extrapolation to full ${\cal B}$ assumed $\Gamma(D^{(*)}\pi^+\pi^-\ell
u)/\Gamma(D^{(*)}\pi\pi\ell
u) = 0.50\pm 0.17$

From T.Lueck @EPS2015

M.Rotondo