D^{*} and τ polarization measurements

Outline:

- Experimental situation \& motivation
- τ polarization measurement in
$B \rightarrow D^{*} \tau \nu$ by Belle
- prospects for D^{*} polarization measurements

Karol Adamczyk
H. Niewodniczański Institute of Nuclear Physics
for the Belle Collaboration

- Summary

The Belle Experiment

KEKB

Belle detector - multipurpose large-solid-angle magnetic spectrometer

KEKB B-factory - asymmetric $e^{+} e^{-}$collider

$$
e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B} \quad\left(772 \times 10^{6} B \bar{B}\right)
$$

- clean source of B meson pairs
- reconstruction of one B meson (B_{tag}) provides information on momentum vector and other quantum numbers of another $\mathrm{B}\left(B_{\text {sig }}\right)$
- $E_{B}=E_{\text {beam }}=\frac{\sqrt{s}}{2}$

Experimental situation

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow \bar{D}^{(*)} \tau^{+} \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow \bar{D}^{(*)} \ell^{+} \nu_{\ell}\right)}
$$

Tagging techniques:
Inclusive $B \rightarrow$ hadrons (inclusive modes)
$\epsilon \approx O(1 \%)$
Semileptonic $B \rightarrow D^{(*)} \ell \nu_{\ell}$

$$
\epsilon \approx O(0.2 \%)
$$

Hadronic $B \rightarrow$ hadrons (exclusive modes)
$\epsilon \approx O(0.1 \%)$

Recent, statistically independent results from Belle:

- $R\left(D^{*}\right)$ measurement with semileptonic tagging; Phys. Rev. D 94, 072007
- $R\left(D^{*}\right)$ and τ polarization measurements with non-leptonic τ decays; https://arxiv.org/abs/1608.06391 (preliminary); final result will be released soon
Belle $R\left(D^{(*)}\right)$ averages about 2σ away from the SM ;

Experimental situation

$\sim 4 \sigma$ tension between SM and combined $R\left(D^{(*)}\right)$ by BaBar, Belle and LHCb
Tantalizing but inconclusive hints of a deviation from the Standard Model in $b \rightarrow c \tau \nu$ transitions:

- $R\left(D^{(*)}\right)$ systematically above the SM expectations, surprisingly large effect for $R\left(D^{*}\right)$
- More observables with more data needed to clarify the situation;

Angular observables not yet (fully) explored experimentally.

Motivation

D^{*} and τ polarizations in semitauonic B decays are sensitive probes of various NP scenarios
example of theoretical predictions for $\bar{B} \rightarrow D^{*} \tau \bar{\nu}$
M. Tanaka and R. Watanabe, Phys. Rev. D 87, 034028 (2013)

$$
F_{L}^{D^{*}}=\frac{\Gamma\left(D_{L}^{*}\right)}{\Gamma\left(D_{L}^{*}\right)+\Gamma\left(D_{T}^{*}\right)}
$$

$F_{L}^{D^{*}}$: fraction of longitudinal polarization of D^{*} SM: $F_{L}^{D^{*}}=0.46-0.53$

$$
P_{\tau}=\frac{\Gamma\left(\lambda_{\tau}=+1 / 2\right)-\Gamma\left(\lambda_{\tau}=-1 / 2\right)}{\Gamma\left(\lambda_{\tau}=+1 / 2\right)+\Gamma\left(\lambda_{\tau}=-1 / 2\right)}
$$

SM: $P_{\tau}\left(D^{*}\right) \approx-0.5$

Kinematic variables describing $B \rightarrow D^{*} \tau \nu$

$\bar{B} \rightarrow D^{*} \tau \bar{\nu}_{\tau}$
$D^{*} \rightarrow D_{\pi}$
$\tau \rightarrow \pi \nu_{\tau}$
$q^{2} \equiv M_{W}^{2}$ - effective mass squared of the $\tau \nu$ system
θ_{τ} - angle between $\tau \& B$ in W^{*} rest frame
$\theta_{\text {hel }}\left(D^{*}\right)$ - angle between $D \& B$ in D^{*} rest frame
$\theta_{\text {hel }}(\tau)$ - angle between $\pi \&$ direction opposite to W^{*} in τ rest frame
χ - angle between the $\tau \nu$ and D^{*} decay planes
(M_{M}^{2} - missing mass squared (effective mass of neutrinos))
M_{W}^{2}, M_{M}^{2} and $\cos \theta_{\text {hel }}(\tau), \cos \theta_{\text {hel }}\left(D^{*}\right)$ can be reconstructed at B-factories with hadronic decays of $B_{\text {tag }}$

τ polarization measurement

$\cos \theta_{\text {hel }}(\tau)$ can be measured if there is a single ν in τ decay
$\tau \rightarrow h \nu_{\tau}, h=\pi, \rho, a_{1}$

Spin analysers: $\frac{d \Gamma}{d \cos \theta_{h e l}(\tau)}=\frac{1}{2}\left(1+\alpha P_{\tau} \cos \theta_{h e l}(\tau)\right)$

$$
\begin{aligned}
& \alpha=1 \text { for } \tau \rightarrow \pi \nu \\
& \alpha=\frac{m_{\tau}^{2}-2 m_{V}^{2}}{m_{\tau}^{2}+2 m_{V}^{2}}, \alpha=0.45 \text { for } \tau \rightarrow \rho \nu
\end{aligned}
$$

$\cos \theta_{\text {hel }}(\tau)$ reconstruction

τ momentum vector is not fully determined;

> in CM of W^{*} $\quad \begin{aligned} & E_{\tau}=\frac{M_{W}^{2}+M_{\tau}^{2}}{2 M_{W}} ; p_{\tau}=p_{\nu_{1}}=\frac{M_{W}^{2}-M_{\tau}^{2}}{2 M_{W}} ; \\ & E_{h}=\frac{M_{W}^{2}+M_{h}^{2}-M_{M}^{2}}{2 M_{W}} ; \\ & \cos \theta_{\tau h}=\frac{2 E_{\tau} E_{h}-\left(M_{\tau}^{2}+M_{h}^{2}\right)}{2 p_{\nu_{1}} p_{h}}\end{aligned}$

- boost to τ rest frame can be done \Rightarrow $\cos \theta_{\text {hel }}(\tau)$

Experimental challenges

- for $\tau \rightarrow \pi(\rho) \nu$ modes combinatorial background from poorly known hadronic B decays
- Distribution of $\cos \theta_{\text {hel }}(\tau)$ is modified by:
- cross-feeds from other τ decays (contribute mainly in the region of $\left.\cos \theta_{\text {hel }}(\tau)<0\right)$
- peaking background (concentrated around $\cos \theta_{\text {hel }}(\tau) \approx 1$)

Measurement of τ polarization

- both $\overline{B^{0}}$ and B^{-}decays are used; $\tau \rightarrow \pi \nu, \rho \nu$
- sample divided into two bins of $\cos \theta_{\text {hel }}:-1<\cos \theta_{\text {hel }}<0 ; 0<\cos \theta_{\text {hel }}<0.8$ (for $\tau \rightarrow \pi \nu)$

$$
P_{\tau}=\frac{2}{\alpha} \frac{\Gamma_{\cos \theta_{\text {hel }}>0}-\Gamma_{\cos \theta_{\text {hel }}<0}^{\Gamma_{\cos } \theta_{\text {hel }}>0}+\Gamma_{\cos \theta_{\text {hel }}<0}}{\text { 隹 }}
$$

- corrections for detector effects: acceptance, asymmetric $\cos \theta_{\text {hel }}$ bins, crosstalks between different τ decays

$\mathrm{P}_{\tau}\left(D^{*}\right)$ measured simultanously with $R\left(D^{*}\right)$

- normalization mode extracted in $M_{\text {miss }}^{2}=\left(p_{\text {beam }}-p_{\mathrm{B}_{\text {tag }}}-p_{D^{*}}-p_{l}\right)^{2}$;
- signal extracted in E_{ECL} (remaining energy in the electromagnetic calorimeter)

\square	Signal
	τ^{*} cross feed
	$B \rightarrow \mathrm{D}^{\star} \mathrm{lv}$
	$\mathrm{B} \rightarrow \mathrm{D}^{\star \star} \mathrm{lv}$
	Hadronic B decay
	Continuum
	fake D^{\star}

Signal extraction

2D ML fit to $E_{\text {ECL }}$ and $M_{\text {miss }}^{2}$ distributions

Signal extraction

2D ML fit to $E_{E C L}$ and $M_{\text {miss }}^{2}$ distributions

Results

https://arxiv.org/abs/1608.06391 (preliminary)

$$
\begin{aligned}
& P_{\tau}\left(D^{*}\right)=-0.44 \pm 0.47(\text { stat. })_{-0.17}^{+0.20}(\text { syst. }) \\
& R\left(D^{*}\right)=0.276 \pm 0.034(\text { stat. })_{-0.026}^{+0.029}(\text { syst. })
\end{aligned}
$$

- first measurement of $\mathrm{P}_{\tau}\left(D^{*}\right)$
- combined $R\left(D^{*}\right)$ and $\mathrm{P}_{\tau}\left(D^{*}\right)$ result is consistent with the SM within 0.6σ

D^{*} polarization studies

Easier to measure than τ polarization

+ all τ decays are useful
+ not affected by cross-feeds between different τ decays

$$
\frac{1}{\Gamma} \frac{d \Gamma}{d \cos \theta_{\mathrm{hel}}\left(D^{*}\right)}=\frac{3}{4}\left[2 F_{L}^{D^{*}} \cos ^{2}\left(\theta_{\mathrm{hel}}\left(D^{*}\right)\right)+\left(1-F_{L}^{D^{*}}\right) \sin ^{2}\left(\theta_{\mathrm{hel}}\left(D^{*}\right)\right)\right]
$$

Recent theoretical papers with D^{*} polarization studies:

- https://arxiv.org/abs/1607.02932
- https://arxiv.org/abs/1606.03164
- https://arxiv.org/abs/1602.03030
- https://arxiv.org/abs/1509.07259

Challenges for D^{*} polarization measurement

Main experimental problem: strong acceptance effects for $\cos \theta_{\text {hel }}\left(D^{*}\right) \geq 0.0$
efficiency

distribution of slow $\pi^{ \pm}$from D^{*}

At Belle using only $B^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau}$ expected stat. uncertainty: $F_{L}^{D^{*}}=X \pm \sim 0.1$ (stat) \Rightarrow competitive test of NP

Summary

- about 4σ tension between SM and combined $R\left(D^{(*)}\right)$ by BaBar, Belle and LHCb
- Polarizations in $\bar{B} \rightarrow D^{*} \tau \nu$ are interesting observables sensitive for NP that can be measured at B factories
- First constraint on τ polarization and new, independent measurement of $R\left(D^{*}\right)$
preliminary results:

$$
\begin{aligned}
& P_{\tau}\left(D^{*}\right)=-0.44 \pm 0.47(\text { stat. } .)_{-0.17}^{+0.20}(\text { syst } .) \\
& R\left(D^{*}\right)=0.276 \pm 0.034(\text { stat. })_{-0.026}^{+0.029}(\text { syst. })
\end{aligned}
$$

- ongoing analysis at Belle: D^{*} polarization measurement
- polarization measurments in semitauonic B decays will be important topic at Belle II

BACKUP

Modification of D^{*} polarization in NP scenarios

https://arxiv.org/abs/1607.02932

FIG. 1: Plots of D^{*} longitudinal polarization fraction $f_{L}\left(q^{2}\right)$ as a function of the dilepton invariant mass q^{2} in the decay $\bar{B} \rightarrow D^{*} \tau \bar{\nu}$. The blue band in all the plots corresponds to the SM prediction. The band is due to theoretical uncertainties, mainly due to form factors, added in quadrature. The plot in the left panel of top row represents $f_{L}\left(q^{2}\right)$ prediction in the presence of NP couplings $C_{V_{L}}=(0.18 \pm 0.04)$ (black band) and $C_{V_{L}}=(-2.88 \pm 0.04)$ (red band). The black and red bands in the middle panel of the top row are for $f_{L}\left(q^{2}\right)$ with NP couplings $C_{T}=(0.52 \pm 0.02)$ and $C_{T}=(-0.07 \pm 0.02)$, respectively. The red band in the right panel of top row corresponds to $C_{S_{L}}^{\prime \prime}=(-0.46 \pm 0.09)$. In the left panel of bottom row, the black and red bands correspond to NP coefficients $\left(C_{S_{L}}, C_{S_{R}}\right)=(-1.02,1.25)$ and $(3.08,-2.84)$, respectively. In the bottom middle panel, $f_{L}\left(q^{2}\right)$ prediction for $\left(C_{V_{L}}^{\prime}, C_{V_{R}}^{\prime}\right)=(0.18,-0.01)$ and $(-2.88,0.01)$ are shown by black and red bands, respectively. $f_{L}\left(q^{2}\right)$ for NP couplings $\left(C_{S_{R}}^{\prime \prime}, C_{S_{L}}^{\prime \prime}\right)=(0.96,2,41)$ (black band) and $(-6.34,-2.39)$ (red band) are shown in right panel of bottom row. (Color online)

Examples of interesting distributions and observables

Predictions on the branching ratios as functions of the absolute value of Wilson coefficient $\left|C_{X}^{\tau}\right|$ for $X=V_{1,2}, S_{1,2}, T$. The predictions of new physics effects for the operators $\mathcal{O}_{X}^{e, \mu}$ are given by the lines for $\delta_{X}=\pi / 2$ in these graphs. The light blue horizontal bands represent the experimental values. (arXiv:1212.1878v3)

Method

1. Reconstruct inclusivly $B_{\text {tag }}$;

First we find $B_{\text {sig }}$ candidates: $\left(D^{*}+(\mathrm{h}\right.$ or $\ell)$), from rest of event we reconstruct candidates for $B_{\text {tag }}$ and calulate: $E_{t a g}=\sum_{i} E_{i} \quad \mathbf{p}_{t a g}=\sum_{i} \mathbf{p}_{i}$
variables to identify $B_{\text {tag }}: M_{\text {tag }}=\sqrt{E_{\text {beam }}^{2}-\mathbf{p}_{\text {tag }}^{2}}, \Delta E_{\text {tag }}=E_{\text {beam }}-E_{\text {tag }}$
2. Extract number of signal events by fitting $M_{\text {tag }}$ distributions in bins of $\cos \theta_{\text {hel }}\left(D^{*}\right)$;

PRL 99, 191807

This approach allows for signal extraction using known PDF's (CrystalBall and Argus) parametrizations;
3. Measure $F_{L}^{D^{*}}$ from fit to obtained $\cos \theta_{\text {hel }}\left(D^{*}\right)$ distribution;

