Orthogonality of invariant vectors

Abstract

Let (π, V) be an irreducible complex representation of a finite group G and let \langle,\rangle_{π} be the standard G-invariant inner product on π. Let H and K be subgroups of G such that the space of H-invariant vectors as well as the space of K-invariant vectors of π are one dimensional. Fix an H-invariant unit vector v_{H} and a K-invariant unit vector v_{K}. Benedict Gross defines the Correlation constant $c(\pi ; H, K)$ of H and K with respect to π. It turn out that $c(\pi ; H, K)=\left|\left\langle v_{H}, v_{K}\right\rangle_{\pi}\right|^{2}$.

In this talk we analyze the Correlation constant $c(\pi ; H, K)$, when $G=$ $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$, where \mathbb{F}_{q} is the finite field with $q=p^{f}$ elements for some odd prime p, H (resp. K) is the split (resp. non split) torus of G. This is joint with U. K. Anandavardhanan.

