School of Mathematics Tata Institute of Fundamental Research

17 April, 2023

Number Theory Seminar

Speaker	:	Arindam Jana, TIFR
Title	:	Periodicity in filtrations of mod p
		representations of $\operatorname{GL}_2(\mathbb{F}_q)$
Date & Time	:	Wednesday, 26 April 2023, 2:30 P.M.
Venue	:	Lecture Room (AG-77)

Abstract

The irreducible mod p representations of $\operatorname{GL}_2(\mathbb{F}_p)$ are exactly the twists of V_r , the r-th symmetric power of the standard representations of $\operatorname{GL}_2(\mathbb{F}_p)$ for small values of r. In this talk, for sufficiently large r, we investigate the periodicity in a filtration of V_r defined by the powers of the polynomial $\theta := X^p Y - XY^p$, motivated by a classical result of Glover. Ghate and Vangala studied the periodicity of the higher quotients in the filtration of V_r using generalized dual numbers. We strengthen their result by defining an explicit isomorphism between these quotients of V_r and generalized mod p principal series representations using differential operators, and extend it to $\operatorname{GL}_2(\mathbb{F}_q)$ for $q = p^f$, $f \ge 1$. In search of a similar periodicity result in case of cuspidal representations, Reduzzi proved that the reduction mod pof a cuspidal representation of $\operatorname{GL}_2(\mathbb{F}_q)$ is isomorphic to the cokernel of a differential operator on V_r defined by Serre. This isomorphism is proved using crystalline cohomology and is not explicit. We define this isomorphism explicitly after tensoring with V_{q-1} . This work is joint with Eknath Ghate.

Milind Pilankar