Science Learning:

Visualization and Representation

Shamin Padalkar
5 December 2014

Spatial Cognition

Knowledge about spatial properties

- Size, shape, distance
- Motion (trajectory / speed)
- Orientation, frame of reference

Some common activities where we

 need spatial thinking...

Some professions where we need spatial thinking

Spatial thinking plays crucial role in the sciences

5

- Spatial ability is the strongest predictor of choice and achievement in education and occupation in STEM (Science, Technology, Engineering and Mathematics) areas (Wai, et. al, 2009)
- It can be improved! (Sorby, 2009)

Spatial Abilities: Amalgam of several correlated factors - Spatial visualisation (e.g. paper folding)

- Spatial orientation (e.g. perspective taking)

- Spatial relations (e.g. mental rotation)
ค

Understanding of Space

Develops through an interaction between visual and kinesthetic-tactile experiences - An infant looks, grasps, sucks - A toddler navigates

- Spatial relations develop at two levels (Piaget \& Inhelder, 1956):
- Perceptual space

- Thought and imagination

Scientific Method

Pedagogic practice: Abduction

Pedagogic practice: Abduction

Astronomical Scale

...Too large to perceive!

Apparent path of the sun

- Mental model
- The earth's axis of rotation is tilted by 23.5 degrees
- The earth revolves around the sun
- Explanation:
- Allocentric frame: Consider a person at a particular latitude (e.g. on the tropic of cancer) at a given time (e.g. at solstice).
- Determine the terminator and mentally rotate the earth.
- Change our frame of reference from allocentric (outside the model) to egocentric (standing on the earth) to visualize path of sun.
- Change latitude (orientation) on the earth to imagine path of sun from different latitudes.
- Change the position of the earth (e.g. at equinox).

Spatial tools / Representations

People's ability to run a mental model is severely limited (Norman, 1980)

- Precise predictions are difficult using mental visualizations
- Limitations of working memory can be compensated using external representations (Tversky, 1999)

Spatial tools

Concrete Models
Gestures \& Actions

Diagrams

- 2-D
- Realistic
\longleftarrow Abstract
- Movable
- Rigid
- Static
- Transformable

Gestures, actions and kinesthetic feedback

- People gesture while
- performing mental rotation task.
- solving problems of mechanical reasoning (Hegarty, 2005; Schwartz \& Black, 1996; Clement et al., 2005) and in astronomy (Subramaniam \& Padalkar, 2009).
Tasks calling for changing one's own orientation (heading) by visual imaging are very difficult to perform, but they get greatly facilitated with use of kinesthetic feedback (Klatzky et al.,1998).

An Example

- Stand up, close your eyes and imagine the following instructions:
- Imagine that you walk 5 steps forward
- Imagine that you turn to your left
- Imagine that you walk another 5 steps
- Now actually point to your original position (from where you started your imaginarily walk) by your hand

Changing imagined orientation is difficult!

From gestures to diagrams

- Action and gesture reflect thought, and also influence it. Gestures can bridge action and abstract thought (Goldin-Meadow and Beilock, 2010).
Children's first graphic signs are the fixation of gestures; gestural depictions continue to accompany later depictions through drawing (Vygotsky, 1978).

In older children, gestures are precursors to arrows in scientific diagrams (Roth, 2000).

The gesture link

An intervention

- Based on the conjecture and pre-test data

Distributed over a year
Divided into 3 parts of 15 days each

- Part I: The round rotating earth
- Part II: The earth revolving around the sun
- Part III: The sun-earth-moon system

Sample

- About 60 students in Grade 8

From tribal, rural and urban schools
Minimal educational background, no exposure to scientific information

- Language disadvantage (differ from formal Marathi)
- Shy and reticent in the classroom (both talk and gestures)

Designed Pedagogic Gestures

Type of linkage	From Concrete	(CM-G-D)	To Diagrams	Total
Gestures necessarily done in presence of CM or D	2	4	5	11
Gestures which follow from CM or lead to D	1	15	11	27
Total	3	19	16	38

Designed Pedagogic Gestures

Forty groups of gestures (metaphoric \& iconic)

Phenomenon internalization

Space Internalization

Measuring angle above horizon

Model Internalization

Right hand thumb rule to determine the direction of rotation of the earth

Orientation Change

Determining directions for a person on a globe or diagram

Change in Reference Frame

We see only one face of the moon: only rotation, only revolution, rotation and revolution together

Observation of Students' Gesture while Problem Solving

- Draw a picture of a girl called Rinku such that is is exactly 12 noon for her ... Draw Rinku's line of horizon ... show the East and West for Rinku on that line.
- Draw Rinku's sister Sonu, such that it is midnight for Sonu ... Draw her line of horizon and show her East and West.
- Sonu sees the star Magha overhead. Show light rays from Magha. (Do you remember: Rays coming from any star to the earth are parallel.)
- ... Sonu sees the star Rohini 20° above the Western horizon. Draw the light rays coming from Rohini towards Sonu ...
- Now draw Mithu, brother of Rinku and Sonu, such that he can see sun setting on the West ... etc.

Students' Spontaneous Gestures

- Average: 1 gesture / minute

Deictic gestures

- Simple Deictic gestures (D point, D multiple point)
- Deictic spatial gestures (D line, D multiple line, D circular, D simultaneous point, D simultaneous line)
- Other deictic gestures (D portion, D instruction)
- Metaphoric gestures
- Iconic gesture
- Gestures for orientation change

Success of the Pedagogy

Human beings on the earth: Gr8t tribal girl

Position of the Pole Star: Gr8t urban boy

The sun-earth-moon model:
Gr8t rural boy

Orbit of the moon:
Gr8t urban boy

Explanation of phases of the moon: Gr8t rural boy

Molecular Scale

...Too small to perceive!

Reliance on representations

Some examples from textbook (Bruice, 2007; first published 1995)

Lewis structure

Kekule structure

Condensed structure

Drawings of ballstick models

Space filling models

Electrostatic potential map

Molecular Orbital (MO) diagrams

Representational competence

Reflective use of a variety of representations

- singly and together
- to think about, communicate, and act on natural phenomena
- in terms of underlying, aperceptual physical entities and processes.' (Kozma \& Russell, 2005)

Meta-representational competence

Choosing the optimal external representation for a task and inventing new representations if necessary (diSessa, 2004, p. 293).

- Knowing affordances, strengths and limitations of each kind of representation

The three kinds of diagrams

Dash-Wedge diagram

Newman Projection

Fischer Projection

- Represent the 3D structure

Equivalent
Perceived from three different orientation
Different conventions

Diagram Translation Task

Chemists need to translate
Commonly used, taught in introductory organic chemistry

- Typical examination problems; indicator of understanding of 3-D structure \& conventions
- Students' strategies: algorithmic and imagistic (Stieff \& Raje, 2010; Padalkar \& Hegarty, 2013)
Poor performance of undergraduate students ($\sim 25 \%$ correct) (Stull, et al., 2012)

Problem

Most students draw stereoisomers (mirror images) of the given molecule

Concrete models

(S)-2-butanol

- Ball-stick models depict the structure most directly
- Identified as one of the important tools in chemistry education
- Students perceive models as facts or copies of the scientific phenomena, are unaware of their accuracy, limitations and strengths (Treagust \& Chittleborough, 2001).

In earlier study...

Students who used models (on at least half of the trials) performed better (ranging from 45\% to 66% accuracy in different experiments)

- Students who rarely used models performed no better than those who did not have access to models (Stull, et. al., 2012).
- Spatial aspect becomes easier by using model, but using the model requires meta-representational competence (diSessa, 2004)
- Interpreting structure of the given diagram
- Establishing the equivalence (given diagram \& concrete model)
- Realizing that one can act on the alternative representation
- Performing the correct spatial transformations on the model
- Drawing target diagram
- Discovering strategy is difficult but it can be taught.

The study

- Laboratory experiment

Individual testing
54 undergraduate students (completed at least one course in organic chemistry)

	Pre-test
Experimental group	30 (15 females)
Control group	24 (12 females)

Procedure

- Pre-test: 6 diagram translation problems (four-carbon)

Questionnaire (confidence/attitudes about models)

- Intervention/5 minutes break
- Align the model with the given diagram.
- Attempt to align the model with their drawing
- If correct - Move to next problem
- If incorrect - Draw correct solution
- Post-test: 6 four-carbon problems, 6 five-carbon problems

Sample problem sheet

Results

Experiment 2

Results

Conclusions

Multiple representations can be used to construct a richer mental model
Equivalent spatial representations can be used to generate feedback while solving problems.

Selected publications

- Padalkar, S. and Hegarty, M. (2014) Models as feedback: Developing representational competence in chemistry. Journal of Educational Psychology DOI: 10.1037 / a0037516
- Padalkar, S., \& Hegarty, M. (2013, February 7-11). Undergraduate students' understanding about representations in chemistry. In G. Nagarjuna, A. Jamakhandi, E. B. Sam (Eds.), Proceedings of Conference episteme-5 (pp. 288-294). Mumbai, India.
- Padalkar, S. and Hegarty, M. (2012). Improving representational competence in chemistry with model-based feedback. Proceedings of CogSci2012: 34th Annual Conference of the Cognitive Science Society, Sapporo, Japan, August 1-4, 2012, 2162-2167.
- Padalkar, S. and Ramadas, J. (2010). Designed and spontaneous gestures in elementary astronomy education. International Journal of Science Education. 33(12), 1703-1739. DOI:10.1080/09500693.2010.520348

Subramaniam, K. and Padalkar, S. (2009). Visualisation and reasoning in explaining the phases of the moon. International Journal of Science Education, 31 (3), 395-417.
Padalkar, S. and Ramadas, J. (2008). Modeling the round earth through diagrams. Astronomy Education Review, 6 (2), 54-74. http:/ / dx.doi.org/10.3847 / AER2007018

References

- Bruice, P. Y. (2010). Organic chemistry (6th ed.). New York, NY: Pearson.
- Clement, J., Zietman, A., and Monaghan, J. (2005). Visualization in Science Education, chapter Imagery in science learning in students and experts, pages 169-184. Number 9. Springer.
- diSessa, A. A. (2004). Metarepresentaion: Native competence and targets for instruction. Cognition and Instruction, 22, 293-331. doi:10.1207/s1532690xci2203_2
- Goldin-Meadow, S., Beilock, S. L. (2010). Action's influence on thought: The case of gesture. Perspectives on Psychological Science, 5(6), 664-674.
- Hegarty, M. (2005). The role of gestures in mental animation. Spatial Cognition and Computation, 5(4):333-356.
- Klatzky, R. L., Loomis, J. M., Beall, A. C., Chance, S. S., and Golledge, R. G. (1998). Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychological Science, 9(4):293-298.
- Kozma, R., \& Russell, J. (2005). Multimedia learning of chemistry. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 409-428). New York, NY: Cambridge University Press. doi:10.1017/ CBO9780511816819.027
- Norman, D. A. (1983). Some observations on Mental Models, In D. Gentner \& A. L. Stevens (Eds), Mental Models, pp 7-14, LEA Publishers, Hillsdale, NJ, London.
- Piaget, J. and Inhelder, B. (1948/ 1956). The Child's Conception of Space. Routledge: London.

References

- Roth, W.-M. (2000). From gestures to scientific language. Journal of Pragmatics, 32:1683-1714.
- Schwartz, D. L. and Black, J. B. (1996). Shuttling between depictive models and abstract rules: Induction and fallback. Cognitive Science, 20:457-497.
- Sorby, S. A. (2009). Educational research in developing 3-d spatial skills for engineering students. International Journal of Science Education, 31(3):459-480.
- Stieff, M., \& Raje, S. (2010). Expert algorithmic and imagistic problem solving strategies in advanced chemistry. Spatial Cognition and Computation, 10, 53-81.
- Stull, A. T., Hegarty, M., Dixon, B., \& Stieff, M. (2012). Representational translation with concrete models in organic chemistry. Cognition and Instruction, 30, 404-434. doi:10.1080/07370008.2012.719956
- Treagust, D. F., \& Chittleborough, G. (2001). Chemistry: A matter of understanding representations. In J. Brophy (Ed.), Subject-specific instructional methods and activities (Vol. 8, pp. 239-267). New York, NY: Elsevier.
- Tversky, B. (1999). What does drawings reveal about thinking? Invited talk at First International Workshop on Visual and Spatial Reasoning in Design, Cambridge, MA, June, 1999.
- Vygotsky, L. S. (1978). Mind in Society. Cambridge, MA: Harvard University Press.
- Wai, J., Lubinski, D. \& Benbow, C. P. (2009) Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817-835.

Web acknowledgements

- http: / / www.sew4home.com/tips-resources/sewing-tips-tricks/hand-sewing-thread-needle-tie-knot
- http: / / www.landolakes.com/Blog/garden-vegetables-grilled-to-perfection
- http: / / mademoisellekarla.blogspot.in/2011/01/how-to-pack-for-6-months-and-not-die.html
- http://www.somersetroadsafety.org/page/advanced-driving/121/
- http://www.nisahomey.com/2012/07/my-cooking-station.html
- http: / / www.genericviagra123.com/blog/oncogene-and-open-heart-surgery.aspx
- http: / / dairybarn.org/event-view/beginner-intermediate-pottery /
- http://www.thehindu.com/features/education/careers/in-a-sculptors-world/article4515682.ece
- http: / / findtot.com/architecture /
- http: / /www.allpar.com / history / chrysler-years / 1988-plymouth-tech.html
- http://www.sportskeeda.com/hockey/asiad-hockey-indian-women-aim-to-return-to-winning-ways
- http:/ / historyoftheuniverse.com/index.php?p=cdevidence.htm
- http: / /www.intmath.com/plane-analytic-geometry/6-hyperbola.php
- https://solarsystem.nasa.gov/multimedia/display.cfm?IM ID=7783
- http://www.nationalhemorrhoiddirectory.org/hemorrhoids resources/diarrhea.html
- http://www.gettyimages.in/detail/photo/mixed-race-baby-girl-playing-with-alphabet-blocks-royalty-free-image/138710767
http:/ / www.ahaparenting.com/ages-stages/toddlers
http: / / www.panoramio.com/photo / 37612883
- http://www.mathworks.com/matlabcentral/fileexchange/42658-3d-visualization-of-sun--earth-and-moon
- http://www.ritter-sport.com/uploads/article files/file/1129/alkohol artikel.jpg?1268835593
- http: / / en.wikipedia.org/wiki/Ethanol\#mediaviewer/File:Ethanol-2D-flat.png

Thanks!

Jayashree Ramadas

* Homi Bhabha Centre for Science Education
* Department of Psychological and Brain Sciences, University of California, Santa Barbara
* National Science Foundation (grant 1008650)
- Quality Education Support Trust

