Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Raghavan Rangarajan Physical Research Laboratory Ahmedabad

with N. Sahu, A. Sarkar, N. Mahajan

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

 REHEATING, GRAVITINOS AND THE M-A ASYMMETRY
- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN

CONCLUSION

PREAMBLE

A BRIEF HISTORY OF OUR UNIVERSE

OBSERVATIONS + GENERAL THEORY
OF RELATIVITY

14 b yr, COMPOSITION, EXPANDING, PAST – HOT AND DENSE

A BRIEF HISTORY OF OUR UNVIERSE

- First second hot primordial plasma of electrons, ...
 photons, quarks/protons, neutrons, dark matter, ...
- 1 s 3 min light nuclei (helium, lithium, ..)
- 400,000 years Atoms form, CMBR
- 300 million years First stars form
- 1 billion years First galaxies form
- 9 billion years Solar system formed, DE domin
- 14 billion years Today

THE FIRST SECOND

• 10^{-44} s – Planck time (E ~ 10^{19} GeV) [Q Gravity]

Grand Unified Theory

• 10⁻³⁸ s – GUT Phase Transition (E ~ 10¹⁶ GeV, ■ T ~ 10²⁹ K)

Standard Model [q, I, H, GB] / Modified SM

- 10⁻¹¹ s Electroweak Phase Transition (E ~ 100 GeV, T ~ 10¹⁵ K)
- 10⁻⁶ s quarks → protons, neutrons (E ~ 1 GeV,
 T ~ 10¹³ K)
- 1 s Primordial Nucleosynthesis begins (E~ 1 MeV, T ~ 10¹⁰ K)

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

 REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN
 CONCLUSION

MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE

- SOLAR SYSTEM
- PROBES, INTERACTION OF SOLAR WIND WITH PLANETS

MILKY WAY

- COSMIC RAYS
- CLUSTER (20 Mpc) GALACTIC COLLISIONS

 (1 Mpc = 3 x 10⁶ lt-yr) INTERGALACTIC HOT PLASMA
- UP TO 1000 Mpc COSMIC DIFFUSE GAMMA RAY SPECTRUM

(ANNIHILATIONS AT BOUNDARY FROM z=1000 TO 20 – 380,000 YR TO 100 MILLION YR) (Cohen, de Rujula, Glashow) 9

MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE

- ANTIMATTER RULED OUT TILL d~1000 Mpc
- SIZE OF OBSERVABLE UNIVERSE ~ 14000 Mpc

$$(1 \text{ Mpc} = 3 \times 10^{19} \text{ km} = 3 \times 10^{6} \text{ lt-yr})$$

MATTER-ANTIMATTER ASYMMETRY OF THE UNIV

- EARLY TIMES (t << 1 s = PRIM. NUCL.) EQUAL AMOUNTS OF MATTER AND ANTIMATTER
- WHERE DID THE ANTIMATTER GO? WHY THIS ASYMMETRY TODAY?
- DISEQUILIBRIUM IN THE EARLY UNIVERSE $100 M + 100 A \rightarrow 103 M + 101 A \rightarrow 2 M$

$$X \to M$$
 $X \to A$

 $r_{M} > r_{A}$, GET MORE MATTER THAN ANTIMATTER

- X = GUT (GRAND UNIFIED THEORY) BOSONS
 GUT BARYOGENESIS MASS (M_x ~ 10¹⁶ GeV)
- X = HEAVY NEUTRINOS
 - LEPTOGENESIS MODELS MASS ($M_N \sim 10^{10} \text{ GeV}$)

MASS EXPRESSED AS MASS ENERGY M c²

1 GeV = PROTON MASS

WHEREFROM

- GUT BOSONS $(M_X \sim 10^{16} \text{ GeV})$
- HEAVY NEUTRINOS $(M_N \sim 10^{10} \text{ GeV})$

1 GeV = PROTON MASS

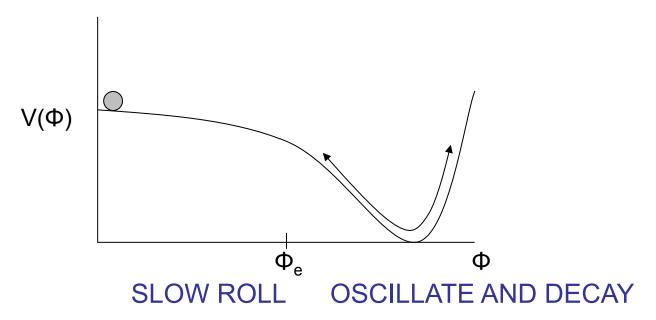
WHEREFROM

- GUT BOSONS $(M_X \sim 10^{16} \text{ GeV})$
- HEAVY NEUTRINOS $(M_N \sim 10^{10} \text{ GeV})$

1 GeV = PROTON MASS

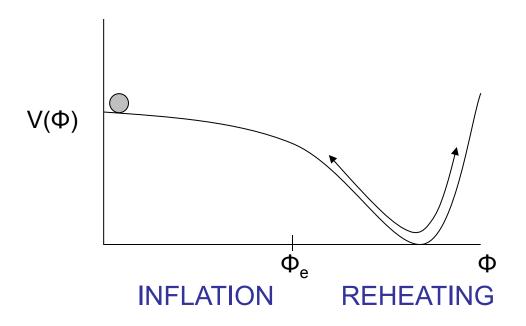
In the hot early Universe when temperatures were very high $(k_BT > M)$ $(k_B=1)$

OUTLINE


- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

 REHEATING, GRAVITINOS AND THE M-A ASYMMETRY
- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN

INFLATION and **REHEATING**


INFLATION – PERIOD OF ACCELERATED EXPANSION IN THE EARLY UNIVERSE (t ~ 10⁻³⁸ s or later)

ASSOCIATED WITH THE DYNAMICS OF A SLOWLY VARYING FIELD CALLED THE INFLATON Φ

ENERGY DENSITY DOMINATES, DETERMINES EVOL OF UNIV

INFLATION and REHEATING

DURING INFLATION, R~ $\exp(H\ t)$ [R IS THE SCALE FACTOR, In expanding Univ d ~ d_1 R(t)]

n OF ALL SPECIES \rightarrow 0. COLD

INFLATON DECAY PRODUCTS THERMALISE, T_{reh}
THERMAL BATH HAS q, I, H, dm, BSM INCLUDING GUT
PARTICLES AND HEAVY NEUTRINOS REHEATING

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN

CONCLUSION

GRAVITINOS

 $\tilde{G}=$ SUPERSYMMETRIC PARTNER OF THE GRAVITON

SUPERSYMMETRY

- EXTENSION OF THE STANDARD MODEL (GAUGE HIERARCHY)
- SUPERPARTNERS: FERMION BOSON

PHOTON – PHOTINO, ELECTRON – SELECTRON (EQUAL m, IF SUSY)

LOCAL (spacetime dep) SUPERSYMMETRY: SUPERGRAVITY

 $\mathsf{GRAVITON} - \mathsf{GRAVITINO}\;(\tilde{G})$

BROKEN $(m_{\tilde{G}} : eV - TeV)$

GRAVITINOS

 $ilde{G}= ext{ SUPERSYMMETRIC PARTNER OF THE GRAVITON}$

PRODUCED AFTER INFLATION $t \sim 10^{-38} \, \mathrm{s} \ (m_{\tilde{G}} : \mathrm{eV} - \mathrm{TeV})$

COSMOLOGICAL CONSEQUENCES (m, n)

• STABLE : AFFECTS EXPANSION RATE, $ho_{ ilde{G}} >
ho_c$ (L/H)

• UNSTABLE: AFFECT EXPANSION RATE PRIOR TO DECAY

DECAY PRODUCTS $\rho > \rho_c$

DESTROY LIGHT ELEMENTS ${}^4He, {}^3He, D$ (NUCLEOSYNTHESIS)

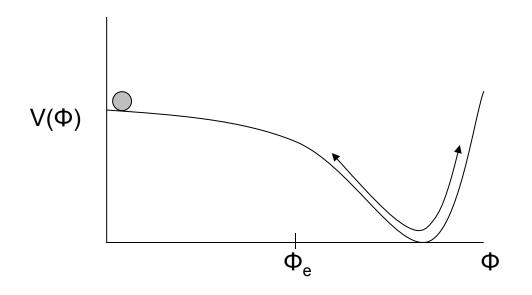
GRAVITINOS

 $ilde{G}= ext{ SUPERSYMMETRIC PARTNER OF THE GRAVITON}$

PRODUCED AFTER INFLATION $t \sim 10^{-34} \, \mathrm{s} \ (m_{\tilde{G}} : \mathrm{eV} - \mathrm{TeV})$

COSMOLOGICAL CONSEQUENCES (m, n)

• STABLE : AFFECTS EXPANSION RATE, $ho_{ ilde{G}} >
ho_c$ (L/H)


UNSTABLE: AFFECT EXPANSION RATE PRIOR TO DECAY

DECAY PRODUCTS $\rho > \rho_c$

DESTROY LIGHT ELEMENTS ${}^4He, {}^3He, D$ (NUCLEOSYNTHESIS)

GRAVITINO PROBLEM(S) => UPPER BOUND ON $ho_{ ilde{\mathbf{G}}} \propto \mathbf{n}_{ ilde{\mathbf{G}}}$

STANDARD PICTURE OF GRAVITINO PRODUCTION

 $\mbox{INFLATION} \longrightarrow \mbox{REHEATING (OSC. + DECAY)} \left(T_{reh} \right)$

→ RADIATION DOMINATED UNIV (Relativistic particles)

THERMAL SCATTERING $\rightarrow G$ (gluons, quarks, squarks, gluinos)

STANDARD CALC OF GRAVITINO PRODUCTION

CALCULATE GRAVITINO PRODUCTION IN THE RAD DOM ERA

MAINLY PRODUCED AT THE BEGINNING OF THE RAD DOM ERA WHEN $T\sim T_{\rm reh}$, AND $n_{\tilde{G}}\propto T_{\rm reh}.$

UPPER BOUND ON $n_{ ilde{G}}$

 \Rightarrow UPPER BOUND ON T_{reh} OF 10^{6—9} GeV (MASS 100 GeV – 10 TeV)

$$k_B T \text{ in GeV} \qquad k_B = 1 \qquad 1 \text{ GeV} = 10^{13} \text{ K}$$

 THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION

 $1 \text{ GeV} = 10^{13} \text{ K}$

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

1 GeV = PROTON MASS

 THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION

 MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

DIFFICULT TO HAVE ENOUGH HEAVY X IN THE RADIATION DOMINATED UNIV AFTER REHEATING

 $n_X \sim \exp(-M c^2/k_B T)$

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

DIFFICULT TO HAVE ENOUGH HEAVY X IN THE RADIATION DOMINATED UNIV AFTER REHEATING

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

 REHEATING, GRAVITINOS AND THE M-A ASYMMETRY
- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN

CONCLUSION

WE FOCUS ON LEPTOGENESIS MODELS – OUT OF EQM DECAY OF N.

POPULAR – RELATED TO LIGHT NEUTRINO MASSES

MASS $M_N \sim 10^{10} \text{ GeV}$

PROBLEM

TWO SPECIES NEUTRINOS AND GRAVITINOS

BOTH CREATED IN THE SAME THERMAL ENVIRONMENT

-- RADIATION DOMINATED UNIVERSE AFTER REHEATING

WANT N (M-A ASYMMETRY) BUT NOT \tilde{G} (DECAY)

SOLUTIONS

INCREASE N

DETAILED VIEW OF REHEATING

DECREASE $ilde{G}$

DELAYED THERMALISATION DURING REHEATING DUE TO SUSY FLAT DIRECTIONS

SOLUTIONS

INCREASE N

DETAILED VIEW OF REHEATING

DECREASE $ilde{G}$

DELAYED THERMALISATION DURING REHEATING DUE TO SUSY FLAT DIRECTIONS

NEW GRAVITINO PROBLEM

INCREASE \widetilde{G} DUE TO SUSY FLAT DIRECTIONS

SOLUTION 1

INCREASE N

DETAILED VIEW OF REHEATING

NEUTRINO PRODUCTION DURING REHEATING

STANDARD CALC OF PRODUCTION ASSUMES INSTANTANEOUS INFLATON DECAY AND REHEATING.

$$T \to T_{max} \to T_{reh}$$

 $T_{\rm reh}$ is the final temperature at the end of reheating

 $T_{\rm max}$ can be as high as 1000 $T_{\rm reh}$. Can be used to create enough neutrinos

CHUNG ET AL, DELEPINE AND SARKAR, GIUDICE ET AL

GRAVITINO PRODUCTION DURING REHEATING

STANDARD CALC OF PRODUCTION ASSUMES INSTANTANEOUS INFLATON DECAY AND REHEATING.

$$T \to T_{max} \to T_{reh}$$

 $T_{\rm reh}$ is the final temperature at the end of reheating

 $T_{\rm max}$ can be as high as 1000 $T_{\rm reh}$. Can be used to create enough neutrinos

IF A LARGE T_{max} CAN ENHANCE NEUTRINO PRODUCTION, CAN IT ALSO ENHANCE GRAVITINO PRODUCTION?

GRAVITINO PRODUCTION DURING REHEATING

SOLVED THE INTEGRATED BOLTZMANN EQUATION FOR GRAVITINO PRODUCTION DURING REHEATING

$$\frac{dn_{\tilde{G}}}{dt} = -3Hn_{\tilde{G}} + \langle \Sigma_{\text{tot}} | v | \rangle n^2$$

e.g.
$$q + \bar{\tilde{q}} \to g + \tilde{G}$$
 $q + \bar{q} \to \tilde{g} + \tilde{G}$ $\tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$

 $q - \tilde{q}, g - \tilde{g}$ Superpartners n is number density of incoming particles

RESULTS

SOLVED THE INTEGRATED BOLTZMANN EQUATION FOR GRAVITINO PRODUCTION DURING REHEATING

$$\frac{dn_{\tilde{G}}}{dt} = -3Hn_{\tilde{G}} + \langle \Sigma_{\text{tot}}|v| \rangle n^2$$

$$\text{e.g.} \quad q + \bar{\tilde{q}} \to g + \tilde{G} \qquad \qquad q + \bar{q} \to \tilde{g} + \tilde{G} \qquad \qquad \tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$$

$$q + \bar{q} \rightarrow \tilde{g} + G$$

$$\tilde{q} + \bar{\tilde{q}} \rightarrow \tilde{g} + G$$

DEPENDENCE ON T_{max} CANCELS OUT [UNEXPECTED]

ABUNDANCE GENERATED IS LARGE, BUT LESS THAN THE COSMOLOGICAL BOUND ON THE GRAVITINO ABUNDANCE

SOLUTION IS VIABLE

RR, SAHU

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

 REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN

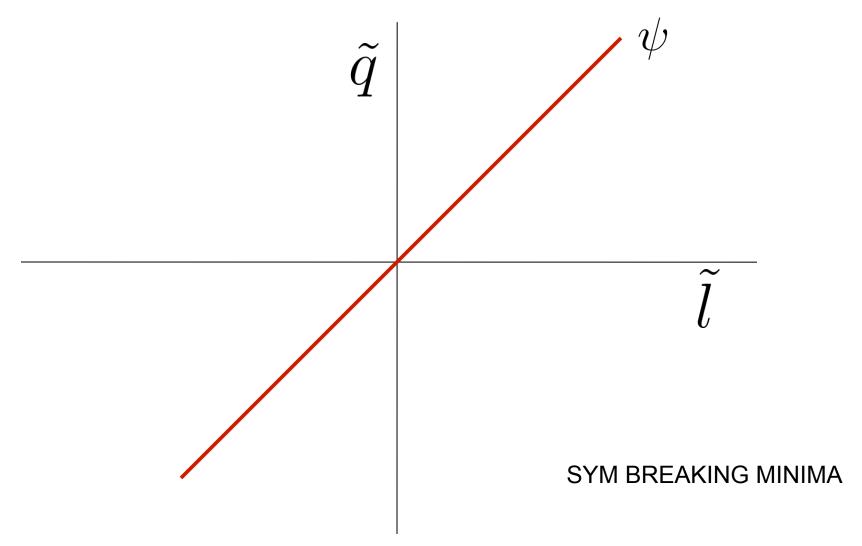
CONCLUSION

SUSY FLAT DIRECTIONS

STANDARD MODEL, H SCALAR (SPIN 0) MINIMISE V, CIRCLE OF POINTS V'=0,

 $\langle H \rangle \neq 0 \Rightarrow q, l, W, Z$ GET MASS HIGGS MECHANISM

SCALAR POTENTIAL V IN SUSY IS A FUNCTION OF


$$(H_u, H_d, \tilde{q}_i, \tilde{l}_i)$$

DIRECTIONS IN FIELD SPACE OF SCALARS ALONG WHICH THE SCALAR POTENTIAL IS MINIMISED

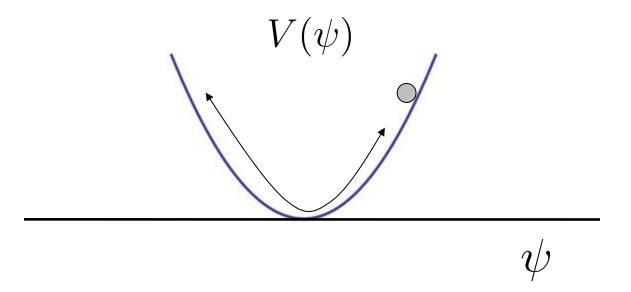
V' = 0, POTENTIAL IS FLAT — FLAT DIRECTIONS

[POTENTIAL IS CONSTANT AND ZERO ALONG FLAT DIRECTION]

SUSY FLAT DIRECTIONS

Any point on this line minimises the potential – parametrised by ψ . Note that each point corresponds to a different vacuum

SUSY FLAT DIRECTIONS


FLAT DIRECTION PARAMETRISED BY ψ

$$\widetilde{q}$$
 = ψ , \widetilde{l} = ψ

PHASES

REPRESENTED BY A COMPLEX SCALAR FIELD $\,\psi\,$ (AFFLECK-DINE FIELD)

SUSY BREAKING

FLAT DIRECTION → QUADRATIC POT WITH CURV m₀²

 $\psi_0 \neq 0 \; \text{ DUE TO QUANTUM FLUCTUATIONS DURING INFLATION; OTHER REASONS}$

WHEN t_U~ t_F (OR H~m_0), $~\psi$ OSCILLATES, $\psi\sim 1/R^{3/2}$

THEN IT DECAYS (BEFORE EWSB t~10⁻¹¹ s)

SOLUTION 2

DECREASE \tilde{G}

DELAYED THERMALISATION DURING REHEATING DUE TO SUSY FLAT DIRECTIONS

COSMOLOGICAL CONSEQUENCES

NON-ZERO VALUE OF ψ GIVES MASS TO GAUGE BOSONS (BREAKS GAUGE SYMMETRY),

e.g.,
$$L\supset \tilde{q}^*\tilde{q}AA$$

FLAT DIRECTION EXPECTATION VALUE CAN BE 10¹³ GEV OR HIGHER

THERMALISATION DUE TO PROCESSES
MEDIATED BY GAUGE BOSONS – PHOTONS (EM),
GLUONS (STRONG)

COSMOLOGICAL CONSEQUENCES

NON-ZERO VALUE OF ψ GIVES MASS TO GAUGE BOSONS (BREAKS GAUGE SYMMETRY),

e.g.,
$$L\supset \tilde{q}^*\tilde{q}AA$$

IF ALL GAUGE BOSONS GET MASS [LLddd, QuQue], IT SLOWS DOWN THERMALISATION AFTER INFLATION

COSMOLOGICAL CONSEQUENCES

STANDARD PICTURE OF REHEATING:

INFLATON DECAYS \to n_0 \to THERMALISE KINETIC EQM n_0 CHEMICAL EQM n_1 [104]

FLAT DIRECTIONS:

INFLATON DECAYS $\rightarrow n_0 \rightarrow$ DELAYED THERMALISATION

$$n \sim n_0 \ll n_1$$

DILUTE PLASMA

GRAVITINOS PRODUCED BY SCATTERING OF INFLATON DECAY PRODUCTS [n.n]

 $n_{\tilde{G}} \downarrow \downarrow$

ALLAHVERDI AND MAZUMDAR; RR AND A. SARKAR

EARLIER INFLATON DECAYS AND DECAY PRODUCTS THERMALISE QUICKLY

$$q + \bar{\tilde{q}} \to g + \tilde{G} \qquad q + \bar{q} \to \tilde{g} + \tilde{G} \qquad \tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$$

$$\dot{n}_{\tilde{G}} = -3Hn_{\tilde{G}} + \langle \Sigma_{\rm tot} | v | \rangle n^2 \qquad n \sim T^3$$

NOW,
$$\dot{n}_{\tilde{G}} = -3Hn_{\tilde{G}} + \int d\Pi_1 d\Pi_2 f_1 f_2 W_{12}(s)$$

$$W_{12}(s) \propto \sigma_{CM}$$

$f_{1,2}$ particle distribution functions for incoming particles

RESULTS

APPROPRIATE $f_{1,2}$

SUPPRESSED GRAVITINO PRODUCTION DUE TO

- A) DILUTE PLASMA
- B) PHASE SPACE SUPPRESSION

$$q + \bar{\tilde{q}} \to g + \tilde{G} \qquad q + \bar{q} \to \tilde{g} + \tilde{G} \qquad \tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$$

OUTGOING GLUON/GLUINO HEAVY GRAVITINO PRODUCTION SHUTS OFF WHEN THE ENERGY OF INCOMING QUARKS/SQUARKS < $m_{g,\tilde{g}}$

RESULTS

SUPPRESSED GRAVITINO PRODUCTION

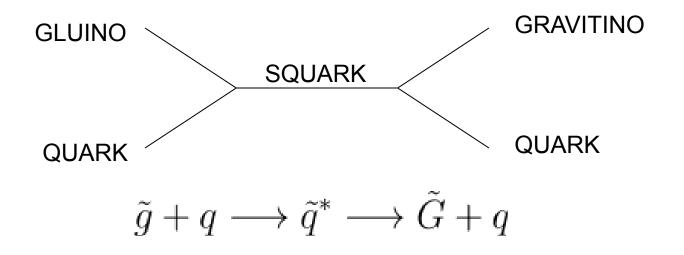
$$Y_{\tilde{G}} = 4 \times 10^{-18}, 10^{-20} < 10^{-14}$$

COMPLETE SHUT OFF

[RR, A. SARKAR]

NJ BUT SUFFICIENT

OUTLINE


- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

 REHEATING, GRAVITINOS AND THE M-A ASYMMETRY
- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN

CONCLUSION

ALTERNATE SCENARIO

- IF FLAT DIRECTION EV DOES NOT BREAK ALL GAUGE SYMMETRIES, THERMALISATION WILL OCCUR
- CONSIDER A SCENARIO WITH H_u H_d FLAT DIRECTION. $SU(3)_C$ x $SU(2)_L$ x $U(1)_Y$ \rightarrow $SU(3)_C$ x $U(1)_{EM}$
- GLUON AND GLUINO LIGHT (m ~ gT, REL), THERMAL DISTRIBUTION
- QUARK AND SQUARK HEAVY (NR), $m\approx h\psi$, ψ > 10¹³ GeV $m_{\tilde{a}}^2-m_a^2=m_S^2 \qquad m_S^2\sim T^2\ll m_{a,\tilde{a}}^2 \quad {}^5$

BREIT-WIGNER RESONANCE WHEN

• CROSS SECTION ~ 1
$$(s-m_{sq}^{2})^{2} + m_{sq}^{2} \Gamma^{2}$$

$$s^{1/2} = E_{gluino} + E_{q}$$
, $\Gamma = squark decay rate$

GRAVITINO PROBLEM AGAIN!

- GRAVITINO ABUNDANCE GENERATED IS VERY LARGE AND GREATER THAN THE COSMOLOGICAL UPPER BOUND FOR MOST PARAMETER SPACE
- COSMOLOGICAL UPPER BOUND IS Y < 10⁻¹⁴
- FOR DIFFERENT SETS OF PARAMETERS

$$Y = 10^{-8} - 10^{-2}$$

GRAVITINO PROBLEM AGAIN!

- LARGE VALUES FOR SUSY FLAT DIRECTIONS IS GENERIC. EXACERBATED GRAVITINO PROBLEM
- HAVE TO INVOKE EARLY DECAY OF FLAT DIRECTIONS TO AVOID CONFLICT

CONCLUSION

- 1. POPULAR MODELS OF GENERATING THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE REQUIRE A LARGE REHEAT TEMPERATURE AFTER INFLATION
- 2. BUT THAT GENERATES TOO MANY GRAVITINOS IN THE UNIVERSE
- 3. COSMOLOGISTS ARE LOOKING FOR MECHANISMS TO ENHANCE NEUTRINO ABUNDANCE/SUPPRESS GRAVITINO ABUNDANCE

CONCLUSION

- 4. NEUTRINOS GENERATED DURING REHEATING ~ GRAVITINO ABUNDANCE GENERATED NOT TOO LARGE
- 5. GRAVITINO ABUNDANCE GENERATED IN A NON-THERMAL UNIVERSE IN THE PRESENCE OF FLAT DIRECTIONS IS SUPPRESSED
- 6. GRAVITINO ABUNDANCE IN A THERMAL UNIVERSE WITH FLAT DIRECTIONS CAN BE LARGE – NEW SOURCE OF THE GRAVITINO PROBLEM

(DETAILS OF THE SUSY MODEL)

ADJUST THE REHEAT TEMP?

- GRAVITINO ABUNDANCE DECREASES BY INCREASING $\mathsf{T}_{\mathsf{REH}}$
- STANDARD PRODUCTION GRAVITINO ABUNDANCE INCREASES WITH T_{REH}