Study of newly found charmonium-like resonances using lattice QCD

M. Padmanath
Institute for Physics, University of Graz, Graz, Austria.

Free Meson Seminar, DTP, TIFR $18^{\text {th }}$ Aug. 2016

- In collaboration with C. B. Lang and Sasa Prelovsek

Outline

(1) Introduction
(2) Methodology
(3) Results
(4) Conclusions

Outline

(1) Introduction
(2) Methodology
(3) Results
(4) Conclusions

Low lying hadron spectrum

Ground states from lattice QCD : fully controlled systematics

Dürr, et. al. Science 21 Vol. 322 no. 5905 pp.
1224-1227
'Gold-plated' channels: studies at physical point

Dowdall, et al., PRD, 86, 094510, 2012

Isospin spliting

- Fully controlled ab initio calculation
- $1+1+1+1$ flavor QCD + QED with clover improved Wilson quarks.
- Accuracy of low energy description is down to per mil level.
- Coleman-Glashow relation : $\Delta_{C G}=\Delta M_{N}-\Delta M_{\Sigma}+\Delta M_{\equiv}$.

Borsanyi, et al., Science, 347, 1452-1455, 2015

Established $\bar{c} c$ hadrons

Low lying charmonium spectra from LQCD

Low lying charmonium spectra from LQCD

'Non-precision' spectrum to be explored

S. L. Olsen, (arXiv : 1511.01589v1[hep-ex])

The XYZ's

TABLE 10: Quarkonium-like states at the open flavor thresholds. For charged states, the C-parity is given for the neutral members of the corresponding isotriplets.

Stata	M Mov	Г MaV ${ }_{1}{ }^{\text {PC }}$	Dracoce (modo)	Exporimont (tha)	$\xrightarrow{\text { Voon Statur }}$	
X(3872)	3871.68 ± 0.17	$<1.21^{++}$	$B \rightarrow K\left(\pi^{+} \pi^{-} J / \psi\right)$	Belle $[810,1030](>10)$, BaBar $[1031](8.6)$CDF $[1032,[1033](11.6)$, D0 $[1034](5.2)$LHCb $[1035,[1036](\mathrm{np})$Belle $[1037](4.3)$, BaBar $[1038](4.0)$Belle [1039] (5.5), BaBar $[1040](3.5)$LHCb [1041] (> 10)BaBar $[1040](3.6)$, Belle $[1039](0.2)$LHCb [1041 (4.4)Belle [1042] (6.4), BaBar [1043] (4.9)	2003	Ok
			$p \bar{p} \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right)$.		2003	Ok
			$p p \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right) \ldots$		2012	Ok
			$B \rightarrow K\left(\pi^{+} \pi^{-} \pi^{0} J / \psi\right)$		2005	Ok
			$B \rightarrow K(\gamma J / \psi)$		2005	Ok
			$B \rightarrow K(\gamma \psi(2 S))$		2008	$\mathrm{NC}!$
			$B \rightarrow K\left(D \bar{D}^{*}\right)$		2006	Ok
$Z_{c}(3885)^{+}$	3883.9 ± 4.5	$25 \pm 121^{+-}$	$Y(4260) \rightarrow \pi^{-}\left(D D^{*}\right)^{+}$	BES III [1044] (np)	2013	NC!
$Z_{c}(3900)^{+}$	3891.2 ± 3.3	$40 \pm 8 \quad ?^{?-}$	$Y(4260) \rightarrow \pi^{-}\left(\pi^{+} J / \psi\right)$	BES III [1045] (8), Belle [1046] (5.2) T. Xiao et al. [CLEO data] [1047] (>5)	$2013 \mathrm{Ok}$	
$Z_{c}(4020)^{+}$	4022.9 ± 2.8	$7.9 \pm 3.7 ?^{?}-$	$Y(4260,4360) \rightarrow \pi^{-}\left(\pi^{+} h_{c}\right)$	BES III [1048] (8.9)	2013	NC!
$Z_{c}(4025)^{+}$	4026.3 ± 4.5	$24.8 \pm 9.5 ?^{?}$?	$Y(4260) \rightarrow \pi^{-}\left(D^{*} \bar{D}^{*}\right)^{+}$	BES III [1049] (10)	2013	NC!
$Z_{b}(10610)^{+}$	10607.2 ± 2.0	$18.4 \pm 2.41^{+-}$	$\Upsilon(10860) \rightarrow \pi(\pi \Upsilon(1, S, 2 S, 3 S))$	Belle [1050-1052] (>10)	2011	Ok
			$\Upsilon(10860) \rightarrow \pi^{-}\left(\pi^{+} h_{b}(1 P, 2 P)\right)$	Belle [1051] (16)	2011	Ok
			$\Upsilon(10860) \rightarrow \pi^{-}\left(B \bar{B}^{*}\right)^{+}$	Belle [1053] (8)	2012	NC!
$Z_{b}(10650)^{+}$	10652.2 ± 1.5	$11.5 \pm 2.21^{+-}$	$\Upsilon(10860) \rightarrow \pi^{-}\left(\pi^{+} \Upsilon(1 S, 2 S, 3 S)\right)$	Belle [1050, 105] (>10)	2011	Ok
			$\Upsilon(10860) \rightarrow \pi^{-}\left(\pi^{+} h_{b}(1 P, 2 P)\right)$	Belle [105] (16)	2011	Ok
			$\Upsilon(10860) \rightarrow \pi^{-}\left(B^{*} \bar{B}^{*}\right)^{+}$	Belle [1053] (6.8)	2012	NC !

N. Brambilla, et al., arXiv:1404.3723v2

The XYZ's

N. Brambilla, et al., arXiv:1404.3723v2

TABLE 12: Quarkonium-like states above the corresponding open flavor thresholds. For charged states, the C-parity is given for the neutral members of the corresponding isotriplets.

State	M, MeV	ᄃ, MeV	$J^{P C}$	Process (mode)	Experiment (\# ${ }^{\text {a }}$)		Status
Y(3915)	3918.4 ± 1.9	20 ± 5	0/2 $2^{\text {? }}$	$\begin{aligned} & B \rightarrow K(\omega J / \psi) \\ & e^{+} e^{-} \rightarrow e^{+} e^{-}(\omega J / \psi) \end{aligned}$	Belle [0888 (8), BaBar (1038, [1089) (19) Belle [1090 (7.7), Baßar [1091] (7.6)	$\begin{aligned} & 2004 \\ & 2009 \end{aligned}$	Ok
							Ok
	$30972+26$	$24+6$	$2++$	$\stackrel{+0^{-} \rightarrow 0_{0}-(D \bar{D}}{ }$	Rollo [ा092 (5.3) BaBar mmex (58 8)	2005	Ok
X (3940)	3942_{-8}^{+9}	37_{-17}^{+27}	$?^{?+}$	$e^{+} e^{-} \rightarrow J / \psi\left(D \bar{D}^{+}\right)$	Belle [1056, [1087] (6)	2005	NO!
$\begin{aligned} & \text { (4000) } \\ & \psi(4040) \end{aligned}$	$\begin{aligned} & 5091 \pm 42 \\ & 4039 \pm 1 \end{aligned}$	80 ± 10			Bent [1uses IIU94] (i.4)PDG [1]	$\begin{aligned} & 2007 \\ & 1978 \end{aligned}$	Ok
$\begin{aligned} & Z(4050)^{+} \\ & Y(4140) \end{aligned}$	$\begin{aligned} & 4051_{-43}^{+24} \\ & 4145.8 \pm 2.6 \end{aligned}$	$\begin{aligned} & 82+55 \\ & 18 \pm 8 \end{aligned}$	$\begin{aligned} & p^{?+} \\ & p^{?}+ \end{aligned}$	$\begin{aligned} & \bar{B}^{0} \rightarrow K^{-}\left(\pi^{+} \chi(1)\right. \\ & B^{+} \rightarrow K^{+}(\phi J / \psi) \end{aligned}$	Belle [1090 (5.0), BaBar 1097 (1.1) CDF [10080ㅇ (5.0), Belle [11099 (1.9), LHCb [1001] (1.4), CMS [101] (>5) D0 1102 (3.1)	$\begin{aligned} & 2008 \\ & 2009 \end{aligned}$	$\begin{aligned} & \mathrm{NCl} \\ & \mathrm{NCl} \end{aligned}$
$\psi(4160)$	4153 ± 3	103 ± 8	$1{ }^{-}$	$e^{+} e^{-} \rightarrow\left(D^{(\cdot)} D^{(\cdot)}\right)$	PDG []Belle [1095] (6.5)	1978	Ok
						2013	NO!
$X(4160)$	$\begin{gathered} 4156+29 \\ { }_{-2}^{+29} \\ \hline \end{gathered}$	139_{-65}^{+113}	$?^{?+}$		Belle [1087] (5.5)	2007	NCl
${ }^{7}$ (42000)	$\xrightarrow[4248+165]{405^{+16}}$??+	$\bar{B}^{0} \rightarrow K^{-}\left(\pi^{+} \chi_{c 1}\right)$	Belle [1090\% (5.0), BaBar [1097] (2.0)	2008	NC!
\boldsymbol{Y} (4260)	4250 ± 9	108 ± 12	1^{-}	$e^{+} e^{-} \rightarrow(\pi \pi, J / \psi)$		2005	Ok
				$e^{+} e^{-} \rightarrow\left(f_{0}(980) J / \psi\right)$	Belle 1046, 1094 (15), BES III 1045 (np) BaBar 1105 (np), Belle [1046 (np)	20122013	Ok
				$e^{+e^{-}} \rightarrow\left(\pi^{-} Z_{C}(3900)^{+}\right)$	BES III 11045 (8), Bolle [1046 (5.2)		Ok NCl
						$\begin{array}{r} 2013 \\ 2012 \end{array}$	
$Y(4274)$	4293 ± 20	35 ± 16	$p^{\text {? }+}$	$B^{+} \rightarrow K^{+}(\phi J / \psi)$	CDF [1098] (3.1), LHCb [1100] (1.0),	2011	$\mathrm{NC!}$
		$\begin{aligned} & 13_{-10}^{+18} \\ & 78 \pm 16 \end{aligned}$	$0 / 2^{?+}$$1^{--}$	$e^{+} e^{-} \rightarrow e^{+} e^{-}(\phi J / \psi)$		$\begin{aligned} & 2009 \\ & 2007 \end{aligned}$	NClOk
$\begin{aligned} & X(4350) \\ & Y(4360) \end{aligned}$	$\begin{aligned} & 4350.6_{-5.1}^{+4.6} \\ & 4354 \pm 11 \end{aligned}$						
				$e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	of Graz, Austria. (11 of 51)		
	XYZ from lattice QCD		M. Padmanath			2007	

Experimental facts : $\mathrm{X}(3872)$

- first observed in Belle 2003 (Belle PRL 2003) D0 @ TIFR and Belle @ TIFR.
- Quantum numbers, $J^{P C}=1^{++}$: (LHCb, 2013)
- Appears within 1 MeV below $D^{0} \bar{D}^{* 0}$ threshold.

- Preferred strong decay modes $D^{0} \bar{D}^{* 0}, J / \psi \omega$ and $J / \psi \rho$
- The isospin still uncertain
* nearly equal branching fraction to $J / \psi \omega$ and $J / \psi \rho$ decays.
* No charge partner candidates observed.

Experimental facts : $\mathrm{Y}(4140)$

- first observed in $B^{+} \rightarrow K^{+} \phi J / \psi$
decays (CDF : PRL 102, 242002)
- Quantum numbers, $J^{P C}=1^{++}$: (LHCb, 2016 [QWG2016])
- CMS confirmed the observation of the peak
(Chatrchyan, et al., PLB 734, 261).
- Results from BaBar have much less statistical significance (Lees, et al., 91, 012003).
- Appears $\sim 30 \mathrm{MeV}$ above $D_{s} \bar{D}_{s}^{*}$ threshold.

- Preferred strong decay mode $J / \psi \phi$.

Not observed in $D^{0} \bar{D}^{* 0}$ or $J / \psi \omega$.

The charmonium spectra I

The charmonium spectra I

L. Liu, et al., JHEP 2012

The charmonium spectra I

The charmonium spectra II

- Charmonia well below open-charm threshold: "straightforward" on lattice
- Above open charm threshold :

All physical states with given $J^{P C}$ can appear as E_{n}. Single meson states, two-meson states, etc.

- Necessitates the inclusion of multi-hadron operators
- $\mathcal{O}=\bar{Q} \Gamma Q$,
$\left(\bar{Q} \Gamma_{1} q\right)_{1_{c}}\left(\bar{q} \Gamma_{2} Q\right)_{1_{c}}$,
$\left(\bar{Q} \Gamma_{1} Q\right)_{1_{c}}\left(\bar{q} \Gamma_{2} q\right)_{1_{c}}$,
$\left[\bar{Q} \Gamma_{1} \bar{q}\right]_{d_{c}}\left[Q \Gamma_{2} q\right]_{d_{c}}$.
- Wick contractions

- Wick contractions with disconnected charm lines are assumed to be negligible : OZI rule

Take home message

- Dynamical study of 1^{++}channel with diquark-antidiquark operators.
- $I=0$: The low lying spectrum remains unaffected with tetraquark operators.
- A candidate for $X(3872)$ found below the lattice $\bar{D}^{*} D$ non-interacting level.
- Tetraquark operators are found to have very little effect on this candidate.
- $I=1$: All energy levels identified with various scattering levels. No additional candidates for $\mathrm{X}(3872)$ charge partner observed.

Outline

(1) Introduction
(2) Methodology
(3) Results

QCD spectrum from Lattice QCD

- Aim : to extract the physical states of QCD.
- Euclidean two point current-current correlation functions

$$
C_{j i}\left(t_{f}-t_{i}\right)=\langle 0| O_{j}\left(t_{f}\right) \bar{O}_{i}\left(t_{i}\right)|0\rangle=\sum_{n} \frac{z_{i}^{n *} z_{j}^{n}}{2 m_{n}} e^{-m_{n}\left(t_{f}-t_{i}\right)}
$$

where $O_{j}\left(t_{f}\right)$ and $\bar{O}_{i}\left(t_{i}\right)$ are the desired interpolating operators and $Z_{j}^{n}=\langle 0| O_{j}|n\rangle$.

- Effective mass defined as $\log \left[\frac{C(t)}{C(t+1)}\right]$
- Excited states appear as sub-leading exponentials

- The ground states : from the exponential fall off at large times. Non-linear fitting techniques.
- Multi-exponential fit : Numerically unstable

Interpolating operators

- Need interpolating operators that create states with desired quantum numbers
\rightarrow Example operators for $J^{P C}=1^{++}: O_{i}^{j}=\bar{q} \gamma_{5} \gamma_{i} q, \bar{q} \overleftarrow{\Delta} \gamma_{5} \gamma_{i} \vec{\Delta} q$
- In practice many different constructions possible.
- All those operators with correct quantum numbers should be OK : Overlaps $\left(Z_{j}^{n}\right)$?
- With multiple interpolators \rightarrow a tower of states
- Cost of computation of correlation matrices $\left(C_{i j}\right)$ very large.
- Particularly with non-local operators as well as disconnected diagrams.

Local and extended operators: "Distillation"

Meson two point correlators using local source operators

Meson two point correlators using extended source operators

Local and extended operators: "Distillation"

- Idea: Quark smearing using low modes of the 3D lattice Laplacian $\left(\xi_{x}^{(k)}(t)\right)$
- Smearing operator defined by

$$
\square_{x y}(t)=V_{x z}(t) V_{z y}^{\dagger}(t)=\sum_{k=1}^{N} \xi_{x}^{(k)}(t) \xi_{y}^{(k) \dagger}(t)
$$

- Advantages :
* all-to-all propagators
* correlation matrix for large basis of interpolators
* momentum projection at source and sink
- Disadvantages : expensive; unfavorable volume scaling
- Stochastic approach improves the scaling.
M. Peardon et al., PRD 80, 054506, 2009

Local and extended operators: "Distillation"

Courtesy (plots) : Abhijit

Local and extended operators: "Distillation"

- Consider an isovector meson two-point function:

$$
C_{M}\left(t_{1}-t_{0}\right)=\left\langle\bar{u}\left(t_{1}\right) \quad \Gamma_{t_{1}} \quad d\left(t_{1}\right) \bar{d}\left(t_{0}\right) \quad \Gamma_{t_{0}} \quad u\left(t_{0}\right)\right\rangle
$$

Local and extended operators: "Distillation"

- Consider an isovector meson two-point function:

$$
C_{M}\left(t_{1}-t_{0}\right)=\left\langle\bar{u}\left(t_{1}\right) \square_{t_{1}} \Gamma_{t_{1}} \square_{t_{1}} d\left(t_{1}\right) \bar{d}\left(t_{0}\right) \square_{t_{0}} \Gamma_{t_{0}} \square_{t_{0}} u\left(t_{0}\right)\right\rangle
$$

Integrating over the quark fields one gets

$$
C_{M}\left(t_{1}-t_{0}\right)=\operatorname{Tr}_{(\sigma, s, c)}\left(\square_{t_{1}} \Gamma_{t_{1}} \square_{t_{1}} M^{-1}\left(t_{1}, t_{0}\right) \square_{t_{0}} \Gamma_{t_{0}} \square_{t_{0}} M^{-1}\left(t_{0}, t_{1}\right)\right)
$$

Substituting the definition of \square and redefining the quantities, the trace reduces to a smaller space.

$$
\begin{gathered}
C_{M}\left(t_{1}-t_{0}\right)=\operatorname{Tr}_{(\sigma, \mathcal{D})}\left(\phi\left(t_{1}\right) \tau\left(t_{1}, t_{0}\right) \phi\left(t_{0}\right) \tau\left(t_{0}, t_{1}\right)\right) \\
\phi_{\alpha \beta}^{a b} \text { and } \tau_{\alpha \beta}^{a b} \text { are }\left(4 N_{\mathcal{D}}\right) \times\left(4 N_{\mathcal{D}}\right) \text { matrices. } \\
\phi(t)=V^{\dagger}(t) \Gamma_{t} V(t) \text { and } \tau\left(t, t^{\prime}\right)=V^{\dagger}(t) M^{-1}\left(t, t^{\prime}\right) V\left(t^{\prime}\right) \\
\text { (perambulator) }
\end{gathered}
$$

Generalized eigenvalue problem

Solving the generalized eigenvalue problem for $C_{i j}(t)$.

$$
C_{i j}(t) v_{j}^{(n)}\left(t, t_{0}\right)=\lambda^{(n)}\left(t, t_{0}\right) C_{i j}\left(t_{0}\right) v_{j}^{(n)}\left(t, t_{0}\right)
$$

Solve for several t_{0} 's.
Choice of t_{0} 's crucial \Rightarrow Determine quality of extractions.

- Principal correlators given by eigenvalues

$$
\lambda_{n}\left(t, t_{0}\right) \propto \exp ^{-E_{n}\left(t-t_{0}\right)}\left(1+\mathcal{O}\left(\exp ^{-\Delta E_{n}\left(t-t_{0}\right)}\right)\right)
$$

Extraction of a tower of states.

- Eigenvectors related to the overlap factors

$$
Z_{i}^{(n)}=\langle 0| \mathcal{O}_{i}|n\rangle=\sqrt{2 E_{n}} \exp ^{E_{n} t_{0} / 2} v_{j}^{(n) \dagger} C_{j i}\left(t_{0}\right)
$$

C. Michael, Nucl. Phys. B 259, 58, (1985)
M. Lüscher and U. Wolff, Nucl. Phys. B 339, 222 (1990)

Resonant scattering

- Most hadrons are resonances under the strong interaction
- Width and the branching fractions often known poorly
- Experimental data is analyzed with a partial wave analysis
- Elastic scattering : amplitudes T_{l} and phase shifts δ_{l} :

$$
T_{I}=\sin \left(\delta_{l}\right) e^{i \delta_{l}}=\frac{e^{2 i \delta_{l}}-1}{2 i}
$$

- A bound state : $\cot \left[\delta_{l}\right]=i$
- An isolated narrow resonance peak : a relativistic Breit-Wigner shaped resonance

$$
T_{I}=\frac{-\sqrt{s} \Gamma(s)}{s-s_{R}+i \sqrt{s} \Gamma(s)}
$$

with the resonance position $s_{R}=m_{R}^{2}$ and decay width $\Gamma\left(s_{R}\right)$

Discrete energy levels: Lüscher's formulae

Discrete energy levels: Lüscher's formulae

- Energy levels represent states with the desired $J^{P C}$.
- Non-interacting two-meson levels are given by

$$
E(L)=\sqrt{m_{1}^{2}+\vec{p}_{1}^{2}}+\sqrt{m_{2}^{2}+\vec{p}_{2}^{2}}
$$

where $\vec{p}_{1,2}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)$.

- Switching on the interaction makes $\vec{p}_{1,2} \neq \frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)$.

The interactions induce a phase shift in the momentum,

$$
\text { e.g. in } 1 \mathrm{D} \quad \vec{p}_{1,2}=\frac{2 \pi}{L} n+\frac{2}{L} \delta(k) \text {. }
$$

- Lüscher's formula relates these level shifts to the infinite volume phase shifts, $\delta_{l}(k)$.
- For S-wave,

$$
\tan \delta(p)=\frac{\pi^{3 / 2} q}{Z_{00}\left(1 ; q^{2}\right)} ; \quad Z_{00}\left(1 ; q^{2}\right)=\sum_{\vec{n} \in N^{3}} \frac{1}{\vec{n}^{2}-q^{2}} ; \quad q=\frac{L}{2 \pi} p
$$

Discrete energy levels: Lüscher's formulae

- Resonance : Avoided level crossings
- Narrower the resonance, smaller the level shifts
- Lüscher's formulae relates these level shifts to the infinite volume phase shifts.

Discrete energy levels: Lüscher's formulae

- Narrower the resonance, smaller the level shifts
- Lüscher's formulae relates these level shifts to the infinite volume phase shifts.

ρ resonance : an old benchmark calculation

Lang, Mohler, Prelovsek, Vidmar, PRD 2011

- Results from a calculation with $m_{\pi}=266(3)(3) \mathrm{MeV}$

$$
g_{\rho \pi \pi}=5.13(20) ; \quad m_{\rho}=792(7)(8) \mathrm{MeV}
$$

- $g_{\rho \pi \pi}$ coupling defined as

$$
\Gamma(s)=\frac{p^{* 3}}{s} g_{\rho \pi \pi}^{2}
$$

Outline

(1) Introduction

(2) Methodology
(3) Results

Interpolators

N	$I=0$	$I=1$
$O_{1-8}^{\text {cc }}$	$\overline{\bar{c}} \hat{\Gamma}$ c	does not couple
$\mathrm{O}_{9}^{\text {MTM }}$	$D(0) \bar{D}^{*}(0)$	$D(0) \bar{D}^{*}(0)$
$\mathrm{O}_{10}^{\text {MM }}$	$J / \psi(0) \omega(0)$	$J / \psi(0) \rho(0)$
$O_{11}^{\text {MM }}$	$D(1) \bar{D}^{*}(-1)$	$D(1) \bar{D}^{*}(-1)$
$\mathrm{O}_{12}^{\text {MM }}$	$D(0) \bar{D}^{*}(0)$	$D(0) \bar{D}^{*}(0)$
$\mathrm{O}_{13}^{\text {MM }}$	$J / \psi(0) \omega(0)$	$J / \psi(0) \rho(0)$
$O_{14}^{\text {M1M }}$	$J / \psi(1) \omega(-1)$	$J / \psi(1) \rho(-1)$
$O_{15}^{\text {MM }}$	$\eta_{c}(1) \sigma(-1)$	$\eta_{c}(1) a_{0}(-1)$
$O_{16}^{\text {M1M }}$	$\chi_{c 1}(1) \eta(-1)$	$\chi_{c 1}(1) \pi(-1)$
$O_{17}^{M 1 M}$	$\chi_{c 1}(0) \sigma(0)$	$\chi_{c 1}(0) a_{0}(0)$
$\mathrm{O}_{18}^{\text {MMM }}$	$\chi_{c 0}(1) \eta(-1)$	$\chi_{c 0}(1) \pi(-1)$
$\mathrm{O}_{19-20}^{4 q}$	$[\bar{c} \bar{q}]_{3_{c}}[c q]_{\overline{3}_{c}}$	$\left[\bar{c} \bar{u}_{3_{c}}[c d]_{\overline{3}_{c}}\right.$
$\mathrm{O}_{21-22}^{4 q}$	$[\bar{c} \bar{q}]_{\overline{6}_{c}}[c q]_{6_{c}}$	$[\bar{c} \bar{u}]_{\overline{6}_{c}}[c d]_{6_{c}}$

Two meson scattering levels $\lesssim 4.2 \mathrm{GeV}$

```
- \(\quad I=0\);
    \(D(0) \bar{D}^{*}(0), \quad J / \psi(0) \omega(0), D(1) \bar{D}^{*}(-1)\),
    \(J / \psi(1) \omega(-1), \quad \eta_{c}(1) \sigma(-1)\),
    \(\chi_{c 1}(0) \sigma(0)\).
- \(\quad I=1\);
    \(D(0) \bar{D}^{*}(0), \quad J / \psi(0) \rho(0), D(1) \bar{D}^{*}(-1)\),
    \(J / \psi(1) \rho(-1), \quad \chi_{c 1}(1) \pi(-1)\),
    \(\chi_{c 0}(1) \pi(-1)\).
```


Lattice we use

Lattice size	N_{f}	$N_{\text {cfgs }}$	$m_{\pi}[\mathrm{MeV}]$	$a[\mathrm{fm}]$	$L[\mathrm{fm}]$
$16^{3} \times 32$	2	280	$266(3)(3)$	$0.1239(13)$	1.98

Hasenfratz et al. PRD 78054511 (2008)
 Hasenfratz et al. PRD 78014515 (2008)

- dynamical u, d and valence u, d, s: clover Fermions
- Fermilab treatment for charm quarks.
- m_{s} set using $[M(\phi)]_{\text {lat }}=[M(\phi)]_{\text {exp }}$.
- m_{c} set using $\left[M_{2}\left(\eta_{c}\right)+3 M_{2}(J / \psi)\right]_{l a t}=\left[M_{2}\left(\eta_{c}\right)+3 M_{2}(J / \psi)\right]_{l a t}$.
- "Distilled" quark sources for all flavors.

An X(3872) candidate from lattice

Lee, DeTar, Mohler, Na, arXiv:1411.1389

- Studies with two-meson operators : First hint for a candidate
- Both calculations neglects charm annihilation
- Observed only when both $\bar{c} c$ and $\bar{D}^{*} D$ are used.
- Vastly different systematics, yet results are similar.

$I=0: \bar{c} c(\bar{u} u+\bar{d} d)$

- No significant effects in the low lying spectrum by the inclusion of diquark-antidiquark operators.
- $[\bar{c} \bar{u}]_{\overline{\mathcal{G}}}[c u]_{\mathcal{G}}$ operators related to two-meson operators by Fierz relations.
- Makes the interpretation as a pure tetraquark unlikely.
- Simulation still unphysical in many ways. Sizable lattice artifacts.
- However, gives a qualitative picture.

X(3872) candidate

- $O_{17}^{M M}: \chi_{c 1}(0) \sigma(0)$
- Without $\bar{c} c$ interpolators, signal doesn't appear.
- Both $\bar{c} c$ combinedly determine the position of the signal for the candidate.
- No significant effects on the levels identified as $J / \psi \omega$ or $\eta_{c}(1) \sigma(-1)$.

X(3872) candidate

Lat. \& Lat. - $O^{4 q}$: This work
[17]: Prelovsek and Leskovec, PRL 111, 192001
[18]: Lee, et al., arXiv:1411.1389

- δ for levels 2 and 5 using Lüscher's formulae :

$$
p \cdot \cot (\delta(p))=\frac{2 Z_{00}\left(1: q^{2}\right)}{\sqrt{\pi} L}
$$

- Phase shift near threshold interpolated using effective range approximation $p \cdot \cot (\delta(p))=\frac{1}{a_{0}}+\frac{1}{2} r_{0} p^{2}$.
- Large negative scattering length, $a_{0}=-1.7(4) f m$, agrees with a shallow bound state.
- Infinite volume bound state position from pole in the resulting scattering matrix.
- No significant effects from $O^{4 q}$.

$I=1: \bar{c} c \bar{u} d$

- All levels identified with various scattering levels.
- No additional candidate observed.
- No charge partner for $\mathrm{X}(3872)$ observed.
- Simulation assumes $m_{u}=m_{d}$. Popular interpretations based on isospin breaking. Simulations with $m_{u} \neq m_{d}$ required for confirmation.

$I=0: \bar{c} c \bar{s} s$

- All levels identified with various scattering levels.
- Candidates for $\chi_{c 1}$ and $X(3872)$ observed. No additional candidate observed.
- No effect observed with the inclusion of diquark-antidiquark operators.
- No candidate for $\mathrm{Y}(4140)$ in 1^{++}.

Fierz relations

- $[\bar{c} \bar{q}]_{\mathcal{G}}[c q]_{\mathcal{G}}$ and two-meson operators are linearly related.

$$
O^{4 q}(x)=\sum F_{i} M_{1}^{i}(x) M_{2}^{i}(x)
$$

- After appropriate Fierz rearrangement

$$
\begin{aligned}
& O^{4 q}= {\left[\bar{c} C \gamma_{5} \bar{u}\right]_{\mathcal{G}}\left[c \gamma_{i} C u\right]_{\mathcal{G}}+\left[\begin{array}{l}
\left.\bar{c} C \gamma_{i} \bar{u}\right]_{\mathcal{G}}\left[c \gamma_{5} C u\right]_{\mathcal{G}} \\
=
\end{array}\right.} \\
& \mp \frac{(-1)^{i}}{2}\left\{\left(\bar{c} \gamma_{5} u\right)\left(\bar{u} \gamma_{i} c\right)-\left(\bar{c} \gamma_{i} u\right)\left(\bar{u} \gamma_{5} c\right)\right. \\
&\left.+\left.\left(\bar{c} \gamma^{\nu} \gamma_{5} u\right)\left(\bar{u} \gamma_{i} \gamma_{\nu} c\right)\right|_{i \neq \nu}-\left.\left(\bar{c} \gamma_{i} \gamma_{\nu} u\right)\left(\bar{u} \gamma^{\nu} \gamma_{5} c\right)\right|_{i \neq \nu}\right\} \\
&+ \frac{(-1)^{i}}{2}\left\{(\bar{c} c)\left(\bar{u} \gamma_{i} \gamma_{5} u\right)+\left(\bar{c} \gamma_{i} \gamma_{5} c\right)(\bar{u} u)\right. \\
&\left.-\left.\left(\bar{c} \gamma^{\nu} c\right)\left(\bar{u} \gamma_{i} \gamma_{\nu} \gamma_{5} u\right)\right|_{i \neq \nu}-\left.\left(\bar{c} \sigma^{\alpha \beta} c\right)\left(\bar{u} \sigma_{\alpha \beta} \gamma_{i} \gamma_{5} u\right)\right|_{i \neq(\alpha<\beta)}\right\}
\end{aligned}
$$

where \mathcal{G} could be 3_{c} or 6_{c}.

- Any gauge-covariant quark smearing preserves this relation.
- Large N : S. Weinberg

Outline

(1) Introduction

(2) Methodology
(3) Results

4. Conclusions

Conclusions

- Dynamical study of 1^{++}channel with diquark-antidiquark operators looking for possible exotic candidates.
- Diquark-antidiquark operators are found to have negligible significant effects on the low lying spectrum (for all three channels).
- A candidate for $X(3872)$ found below the lattice $\bar{D}^{*} D$ non-interacting level.
- Amplitude analysis within elastic approximation for $\bar{D}^{*} D$ scattering; a bound state immediately below the $\bar{D}^{*} D$ threshold.
- No additional candidates observed hinting an exotic signal.
- Outlook: Rigorous calculations involving coupled channel effects.
- Outlook: Calculations on larger lattice volumes.
- Outlook: Simulations with $m_{u} \neq m_{d}$ for isospin breaking effects.

H dibaryon

- Bound six quark system with $S=-2, I=0$, $J^{P}=0^{+}:$R. L. Jaffe, PRL 38, (1977) 195.
- K. Nakazawa et al., KEK-E176 \& E373 Collaboration Nagara Event, Mikage event, Demachiyanagi event, Hida event.
- C. J. Yoon et al., KEK-PS E522 Collaboration
- Plethora of theoretical studies, no conclusions yet.
- NPLQCD (PRL 2011) : B.E. $=16 \mathrm{MeV}$. HALQCD (PRL 2011) : B.E. $=30-40 \mathrm{MeV}$. Unphysical quark masses.
- Recent calculations at physical quark masses See Lattice 2016 talks by HALQCD.

Technical details

- MILC lattices with $N_{f}=2+1+1$ dynamical HISQ fermions. Three ensembles: $24^{3}, 32^{3}$ and 48^{3}.
- Physical volume $\sim 2.9 f m$.
- Overlap formulation, with wall sources, for valence quarks.
- Light quark masses as low as physical light quark masses.
- Tuned strange and charm quark masses.
- $\Lambda=s(u \Gamma d)$ and $O_{\Lambda-\Lambda}=\Lambda^{T} C \gamma_{5} \Lambda$.

Very preliminary

N. Mathur, M. P. and S. Pavaskar

Distillation on MILC lattices : preliminary

$n^{2 s+1} \ell_{J}$	$J^{P C}$	$\begin{gathered} \mathrm{I}=0 \\ c \bar{c} \end{gathered}$	$\begin{gathered} I=0 \\ b \bar{b} \end{gathered}$	$\begin{gathered} \mathrm{I}=\frac{1}{2} \\ c \bar{u}, \bar{c} \bar{d} ; \bar{c} u, \bar{c} d \end{gathered}$	$\begin{aligned} & \mathrm{I}=0 \\ & \bar{c} ; \bar{c} s \end{aligned}$	$\begin{gathered} 1=\frac{1}{2} \\ b \bar{u}, b \bar{d} ; \bar{b} u, \bar{b} d \end{gathered}$	$\begin{aligned} & I=0 \\ & b \bar{s} ; \bar{b} s \end{aligned}$	$\begin{aligned} & \mathrm{I}=0 \\ & b \bar{c} ; \bar{b} c \end{aligned}$
$1^{1} S_{0}$	0^{-+}	$\eta_{c}(1 S)$	$\eta_{b}(1 S)$	D	$D_{s}^{ \pm}$	B	B_{s}^{0}	$B_{c}^{ \pm}$
$1^{3} S_{1}$	1^{-}	$J / \psi(1 S)$	$\Upsilon(1 S)$	D^{*}	$D_{s}^{* \pm}$	B^{*}	B_{s}^{*}	
$1^{1} P_{1}$	1^{+-}	$h_{c}(1 P)$	$h_{b}(1 P)$	$D_{1}(2420)$	$D_{s 1}(2536)^{ \pm}$	$B_{1}(5721)$	$B_{s 1}(5830)^{0}$	
$1{ }^{3} P_{0}$	0^{++}	$\chi_{c 0}(1 P)$	$\chi_{60}(1 P)$	$D_{0}^{*}(2400)$	$D_{s 0}^{*}(2317)^{ \pm \dagger}$			
$1{ }^{3} P_{1}$	1^{++}	$\chi_{c 1}(1 P)$	$\chi_{61}(1 P)$	$D_{1}(2430)$	$D_{s 1}(2460)^{ \pm \dagger}$			
$1^{3} P_{2}$	2^{++}	$\chi_{\text {c2 }}(1 P)$	$\chi_{b 2}(1 P)$	$D_{2}^{*}(2460)$	$D_{s 2}^{*}(2573)^{ \pm}$	$B_{2}^{*}(5747)$	$B_{s 2}^{*}(5840)^{0}$	
$1^{3} D_{1}$	1^{-}	$\psi(3770)$			$D_{s 1}^{*}(2860)^{ \pm \ddagger}$			
$1{ }^{3} D_{3}$	3^{--}				$D_{s 3}^{*}(2860)^{ \pm}$			
$2^{1} S_{0}$	0^{-+}	$\eta_{c}(2 S)$	$\eta_{b}(2 S)$	$D(2550)$				
$2^{3} S_{1}$	1^{--}	$\psi(2 S)$	$\Upsilon(2 S)$		$D_{s 1}^{*}(2700)^{ \pm \ddagger}$		PDG	
$2^{1} P_{1}$	1^{+-}		$h_{b}(2 P)$					
$2^{3} P_{0,1,2}$	$0^{+++}, 1^{++}, 2^{++}$	$\chi_{c 0,2}(2 P)$	$\chi_{b 0,1,2}(2 P)$					
$3^{3} P_{0,1,2}$	$0^{+++}, 1^{++}, 2^{++}$		$\chi_{b}(3 P)$					

Distillation on MILC lattices : preliminary

ρ meson by HSC

