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Quantum Field Theory is a universal mathematical structure that
follows from two central pillars of modern physics

Quantum Mechanics

Special Relativity
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It is the main framework in Elementary Particles, Statistical
Mechanics, Condensed Matter, Stochastic Processes, and
Cosmology.
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Many of the BIG open problems in Quantum Field Theory are
associated with strong coupling, for example,

Planck scale physics

Confinement in Yang Mills theory

Superconductivity

Ising model in d = 3

Spin glass...
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In this colloquium I would like to describe a technique which allows
in some cases to prove exact results about strongly coupled models.

I will start with an easy quantum mechanical model which serves
as a pedagogical example and introduces the relevant physical and
mathematical machinery.

Incidentally, this model also exhibits the simplest boson-fermion
duality I know.
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Then I will use an argument from analogy to explain that
Yang-Mills theory, which is very important in nature, has the same
sort of hidden topology and we can thus extract some
non-perturbative results about Yang-Mills theory. I will mention
several predictions that follow about the vacuum structure and
about the phase diagram.
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This is based on several papers in preparation and on a paper that
has already appeared in March 2017 with D.Gaiotto, A.Kapustin,
and N.Seiberg. The additional collaborators on some other,
related, works are J.Gomis, A.Sharon, T.Sulejmanpasic,
R.Thorngren, M.Unsal, X.Zhou.
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The classical Lagrangian of a particle on a ring is

L =
1

2
q̇2 − V (q)

and V (q) being some potential such that V (q + 2π) = V (q).

For example for V = 0 we could have the particle moving around
with arbitrary angular velocity q = ωt, and energy E = 1

2ω
2.
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The first surprise about this model is that the quantization is
ambiguous. There is a one parameter family of choices because the
wave function does not need to be periodic

Ψ(q + 2π) = e iθΨ(q)

Physically, this could be due to a solenoid with Φ = θ magnetic flux
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Equivalently, in terms of Feynman’s sum over histories, we can
break up the space of possible histories according to how many
times one winds around the circle and add an appropriate phase.
So the Lagrangian is really

L =
1

2
q̇2 − V (q) +

θ

2π
q̇

and now the wave functions are taken to be always periodic.
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The extra term in the path integral,

Exp

[
i
θ

2π

∫
dtq̇

]
is just

Exp [iθn]

where n is the number of time the particular path winds around
the circle.
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Note that the deformation parameter θ is periodic. This is
manifest in all the descriptions we have given so far

θ ' θ + 2π .
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Let us take V = 0.
The conjugate momentum is shifted as Πq = q̇ + θ

2π and the
Hamiltonian is thus

H =
1

2

(
Πq −

θ

2π

)2

The eigenfunctions and eigenvalues are

|n〉 , 〈q|n〉 = Ψn(q) = e iqn .

En =
1

2

(
n − θ

2π

)2

.
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We see that the full spectrum is indeed invariant under
θ → θ + 2π. But the individual states cross each other so we have
a nontrivial map where

θ → θ + 2π

is accompanied by
|n〉 → |n + 1〉 .
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One should say that the theories with θ and θ + 2π are equivalent
because there is a similarity transformation between them. The
similarity transformation is however nontrivial. Indeed, it is
implemented by the operator

U = e iq , U†U = 1 .
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A curious case is θ = π where we see that the ground state is
doubly degenerate – it is a qubit. For example at θ = π the ground
states are spanned by

|0〉, |1〉 .
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So far this could have been an easy exercise in a graduate course.
But now let us discuss what happens if we add a potential

V (q) =
∑
k∈Z

ck cos(kq) + dk sin(kq)

I will introduce some tools that would allow to prove the following
theorem:

If only c2k 6= 0 then the qubit at θ = π remains.
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So for example we expect that V (q) = cos(q) would lift the qubit
but V (q) = cos(2q) would retain it.
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We begin by considering again the free model V = 0. Obviously it
has a rotation symmetry q → q + α for any α. This symmetry
group is

SO(2)

At θ = 0, π there is another symmetry q → −q.

Note that to see that q → −q is a symmetry at θ = π we used the
fact that θ = π, and θ = −π describe the same theory. So the
symmetry group at θ = 0, π is

O(2)
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The generator of the reflection is denoted by C and the generator
of SO(2) is Vα. The group O(2) means that we have

CVαC = V−α , C 2 = 1 , α ' α + 2π .

Now we should realize them on the Hilbert space:

θ = 0 : Vα|n〉 = e inα|n〉, C |n〉 = | − n〉.

θ = π : Vα|n〉 = e inα|n〉, C |n〉 = | − n + 1〉.
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θ = 0 : Vα|n〉 = e inα|n〉, C |n〉 = | − n〉.
This is completely consistent with C 2 = 1, α ' α + 2π and
CVαC = V−α. The ground state |0〉 is unique, and O(2) invariant.

θ = π : Vα|n〉 = e inα|n〉, C |n〉 = | − n + 1〉.
C 2 = 1, α ' α+ 2π are obeyed. But if we try to check the algebra
of charges we find that

CVαC = e iαV−α

We see that the algebra of operators is centrally extended when we
act on the Hilbert space! If we acted on the projective Hilbert
space, the ground state qubit would be a perfectly good
representation of O(2). But the actual Hilbert space is only a
representation of a centrally extended group.
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Can we remove this central extension?

CVαC = e iαV−α

define Uα = Vαe
−iα/2, then

CUαC = U−α .

But now α ' α + 4π. So now we see that the central extension
leads to a double cover of the group. This is very similar to how
SU(2) is the double cover of SO(3). Here we have also a central
extension by Z2

Z2 → Pin(2)→ O(2)

Zohar Komargodski Using Topology to Solve Strongly Coupled Quantum Field Theories



A neat way to summarize this curious situation is to say that the
classical symmetry O(2) suffers from a ’t Hooft anomaly in the
quantum theory. In particular, the ground state is not a
representation of O(2) but of Pin(2). It is therefore natural to give
the |0〉, |1〉 states charge 1/2 under the rotations. So the particle
q(t) is really a fermion at θ = π.
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In fact, the ground state of the model is dual to the free fermion

L = ψ†ψ̇

The naive symmetries of a qubit are charge conjugation ψ → ψ†

and phase rotations ψ → e iαψ but in the quantum theory there is
a central extension, exactly like for the symmetries of the boson!
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We are thus dealing here with a system that has a Z2 anomaly for
its O(2) global symmetry. But do we really need to preserve the
full O(2) for that? Suppose we only retain Vπ and C . Classically
they just generate Z2 × Z2. Quantum mechanically we have a
central extension η.

V 2
π = C 2 = 1 , CVπC = ηVπ , η2 = 1 ,

and η = −1 at θ = π and η = 1 for θ = 0. η is central.

The group generated by Vπ,C , η is just the dihedral group that
preserves the square, D8.
So while the symmetry at θ = 0 is Z2 × Z2, at θ = π it is centrally
extended to D8.
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The ground state qubit |0〉 ⊕ |1〉 furnishes the two dimensional
representation of D8 where |0〉 and |1〉 are like the sides of a square.
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Since our Z2 anomaly exists even if we break O(2) down to
Z2 × Z2, we can now add any potential which has this symmetry.
Since the anomaly cannot disappear the degeneracy has to remain!
For example, any potential of the form

V (q) =
∑
k∈Z

c2k cos(2kq)

would work since it preserves q → −q and q → q + π.
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Note that we have an example here, of a potential with two
minima, e.g. cos(2q), where the degeneracy between the two
classical minimal is preserved in the exact quantum theory. The
folklore is that instantons always lift the degeneracy in quantum
mechanics and the ground state is unique (at least in
non-supersymmetric cases). We see that this is not true.
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Why is it true then in potentials like the double well?

Here indeed the ground state is Ψ− + Ψ+, it is Z2 invariant, and it
is non-degenerate.
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It is because Z2 cannot have nontrivial extensions, as simple as
that...

H2(Z2,U(1)) = 0 .

But once we start studying potentials with more complicated
symmetries, e.g. Z2×Z2, then anomalies are perfectly allowed, e.g.

H2(Z2 × Z2,U(1)) = Z2

So a non-degenerate symmetric ground state is probably the
exception rather than the rule.
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This argument that we used, i.e. that the anomaly cannot
disappear as long as the corresponding symmetries are not
broken, is an example of the general philosophy of ’t Hooft.

When ’t Hooft anomalies are present, the ground state is
necessarily nontrivial since it needs to “match” the anomalies
and lead to a non-gauge invariant partition function under
gauge transformations of the background fields.

It appears that such anomalies are much more common than
traditionally thought. Such anomalies exist in all dimensions
and they do not require fermions in the Lagrangian.
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This example that we discussed turns out to be very educational
because almost all the aspects that we discussed carry over to
Yang-Mills Theory!
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First let us review the classical Yang-Mills theory with SU(N)
gauge group. The dynamical variable, a, is a space-time vector
which is also traceless Hermitian N × N matrix and we define

F = da + i [a, a] .

We write the classical action/energy functional

S =

∫
d4xTr(F ∧ ?F ) =

∫
d4x |F |2 .

The Euler Lagrangian equations, known as the Yang-Mills
equations, are very nonlinear

daF = da ? F = 0 ,

where ? is the Hodge dual.

There is of course a huge amount of work on these classical PDEs.
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This theory is a nonlinear version of Maxwell’s theory. The crucial
physical difference is that the fields E ,B in Maxwell’s theory do
not carry electric charge. This is why it is linear. Here E and B
carry charge. This leads to an important difference. In Maxwell’s
theory we have a Gauss Law

we can extract the total charge by measuring∫
2
E
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But in Yang-Mills theory we cannot quite do that because the field
itself is charged so it is hard to isolate the probe charge. So
imagine that we put an external probe particle in the
representation R of SU(N). The fields E ,B are in the
representation Adj(SU(N)) and hence they may confused us and
we can measure any charge of the form

R ⊗ Adj ⊗ Adj · · · .

So we cannot measure R but we can measure it N-ality. We thus
have a ZN “center” symmetry. In Maxwell’s theory it is SO(2)
because we can measure any U(1) charge.

For example, in SU(2) Yang-Mills, we can measure whether R is
even- or odd- dimensional representation but not more than that.
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The quantum theory is, however, non-unique! The physical reason
is as before – in the various possible histories, there is a hidden
internal circle and the histories can be divided according to how
many times this circle has been wound around.

1

2π

∫
dx q̇ ←→ 1

8π2

∫
d4x Tr(F ∧ F )

Zohar Komargodski Using Topology to Solve Strongly Coupled Quantum Field Theories



Therefore in the quantum theory we have as before a θ parameter
which we can add to the action

iθ

8π2

∫
d4xTr(F ∧ F )

and it is manifest that θ ' θ + 2π.
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The two choices θ = 0, π are special! They preserve time-reversal
symmetry. Or equivalently, they preserve CP symmetry. This is
again slightly nontrivial at θ = π since we need to use the fact that
θ = π and θ = −π describe the exact same theory. But there is, as
before, a nontrivial similarity transformation involved at θ = π.
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Now we need to discuss the analog of the SO(2) symmetry,
q → q + α. This is a nontrivial part of the story. This role is
played by the center symmetry. In Maxwell’s theory it is U(1) and
in SU(N) Yang-Mills theory it is ZN .
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The symmetry group at θ = 0, π is therefore

time − reversal × ZN

At θ = 0 there is no anomaly and for θ = π there is an anomaly.

The model at θ = 0 is gapped with a trivial confining vacuum, as
observed by lattice simulations. The model at θ = π however
cannot have a trivial ground state. One way to saturate the
anomaly is to break time reversal spontaneously and have two
degenerate confining ground states.
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As we crank up the temperature we expect time reversal would be
eventually restored. Also, we expect the gluons would be liberated.
The anomaly can be saturated only if the latter happens before the
former.
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Therefore, at sufficiently large N (probably N ≥ 3) we expect the
following phase diagram for Yang-Mills theory
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Let us now briefly discuss the question of whether this mechanism
operates in nature. First of all, in QCD there are fundamental
quarks and the ZN is thus not present. But there is a symmetry
that rotates between the quarks which in some sense replaces it. If
one of the quark masses is negative, e.g. if mu < 0 then one may
have spontaneously broken time reversal invariance very similar to
what we described. I believe we do not actually know whether this
happens.

There could be an additional sector to the Standard Model where
the above mechanism occurs. Perhaps this could trigger the
violation of CP that we see in the real world.
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We saw that using anomalies and topology one can establish a
non-perturbative result about Yang-Mills theory. But there are
many other examples where we can make striking predictions using
new discrete ’t Hooft anomalies, for example,

QCD (the center symmetry is not necessary!)

Néel-VBS transition and its Nf > 2 generalizations.

Chern-Simons theories.

Abelian Higgs model in two dimensions (of which the Haldane
model is a special case).

In some cases we can also make strong claims about the phase
diagram at finite temperature, as we did in Yang-Mills theory.
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Summary

Topology offers a window into non-perturbative physics, often
leading to concrete, verifiable predictions.

Anomalies can exist in bosonic systems, even in 2+1
dimensions (and also 0+1 and 4+1).

The mathematical underpinnings of these developments lie in
understanding discrete characteristic classes of principle
bundles (and also higher gauge theory).

There are applications for domain walls, thermal physics (with
and without chemical potentials), the nature of various
transitions (1st/2nd order), and testing dualities.
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