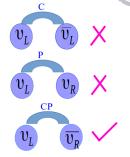
Study of the decay $D^0 \to K^0_S K^0_S$ at Belle and its Belle II projection & SVD beam background at Belle II

Nibedita Dash IIT Bhubaneswar

April 17, 2018

Outline

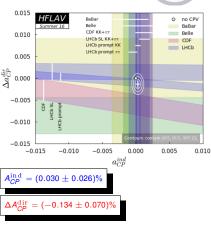
Introduction


Experimental setup

- Analysis Strategy
- Results & interpretation
- Belle II prospect of $D^0 \to K^0_S K^0_S$
- Belle II Vertex Detector
- SVD Beam Background simulation
- Conclusion

Introduction

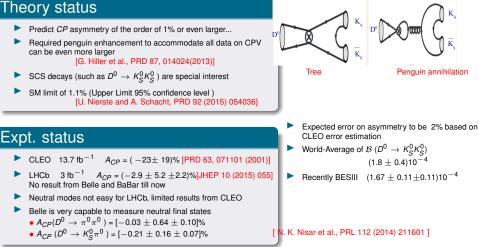
- CP Violation: Physics is not symmetric under CP conjugate systems
- In Standard Model, CP symmetry is slightly violated by weak interaction
- CP Violation is first observed in neutral Kaon meson System
- CP violation is measured the asymmetry of matter-antimatter


Kinds of CP Violation (CPV) : 1. Direct CP violation (neutral and charged D, mode dependent)

CPV in decay:
$$A_d \equiv \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2}$$
 occurs if $A_d \neq 0$, through time- integrated asymmetries = $\frac{\Gamma(D \to \bar{f}) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to \bar{f}) + \Gamma(\bar{D} \to \bar{f})}$

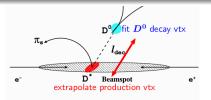
2. Indirect CP violation (neutral D only, common for all decay modes)

Introduction ...


- Mixing in the up-quark sector only occurs for D⁰ meson
- Mass eigenstates : $|D_{1,2}^0\rangle = p |D^0\rangle \pm q |\overline{D^0}\rangle$, x = $\Delta M/\Gamma$, y = $\Delta \Gamma/2\Gamma$
- Asymmetry in time- integrated decay rates : $A_{\rm CP}^{t}(t) = \frac{\Gamma(D \to t) - \Gamma(D \to t)}{\Gamma(D \to t) + \Gamma(D \to t)} \approx A_{\rm CP}^{\rm dir} + A_{\rm CP}^{\rm ind} \frac{t}{D} \text{ with } A_{\rm CP}^{\rm ind} = -A_{\Gamma}({\rm universal})$
- CP violation in charm sector is expected to be O(0.1)% in SM since most of the charm decays are well described by the first two quark generation.
- ► In 2012, LHCb and CDF measured an unexpectedly high value of $\Delta A_{CP} = A_{CP}(D^0 \rightarrow KK) A_{CP}(D^0 \rightarrow \pi\pi)$

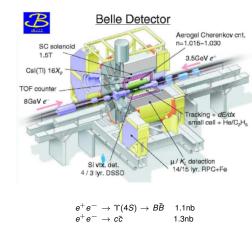
- Compatible with 0 with P = 0.093.
- BaBar and Belle provide contribution competitive with hadronic experiments.

Motivation



Introduction ...

objectives


- Measure BF ratio and BF of D⁰ → K⁰_SK⁰_S
 Time-integrated CP violation asymmetry in the decay D⁰ → K⁰_SK⁰_S
- Usually using $D^{*\pm} \rightarrow D^0 \pi_s^{\pm}$
 - flavor tagging by slow π charge
 - provides also considerable background suppression
- Observable:∆M : reconstructed mass difference of D* and D⁰
- The slow pion is constrained to originate from the IP in order to improve the ΔM resolution.

Using a normalization mode ($D^0
ightarrow {\cal K}^0_S \pi^0)$

Belle Detector

Data used $\Upsilon(4S)\&\Upsilon(5S)$ (921 fb⁻¹)

Overviews & methods

$$\begin{array}{l} \mathsf{Faw asymmetry :} \\ A_{\mathrm{rec}}(A_{\mathrm{raw}}) = \frac{N_{\mathrm{rec}}^{p^{*+} \rightarrow D^{0}\pi_{s}^{+}} - N_{\mathrm{rec}}^{D^{*-} \rightarrow \tilde{D}^{0}\pi_{s}^{-}}}{N_{\mathrm{rec}}^{p^{*-} \rightarrow D^{0}\pi_{s}^{+}} + N_{\mathrm{rec}}^{p^{*-} \rightarrow \tilde{D}^{0}\pi_{s}^{-}}} = \frac{N(D^{0}) - N(D^{0})}{N(D^{0}) + N(D^{0})} = A_{\mathrm{CP}} + A_{\mathrm{FB}} + A_{\epsilon}^{\pm} + A_{\epsilon}^{K} \\ \mathsf{A}_{\mathrm{CP}} : CP \text{ asymmetry} \\ \mathsf{A}_{\mathrm{FB}} : \text{ forward-backward production asymmetry} \\ \mathsf{A}_{\epsilon}^{\pm} : \text{ Asymmetry in } \pi_{s} \text{ detection} \end{array} \right\} \text{ Independent on final states} \\ \begin{array}{c} \mathsf{A}_{\epsilon}^{\pm} : \text{ Asymmetry in interaction of } K^{0}/\tilde{K}^{0} \end{array}$$

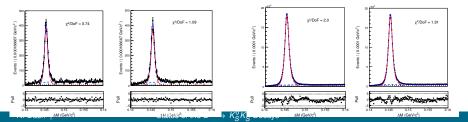
$$\begin{bmatrix} P^0 \rightarrow K^0_S K^0_S = (A^{D^0}_{\rm rec} \rightarrow K^0_S K^0_S - A^{D^0}_{\rm rec} \rightarrow K^0_S \pi^0) + A^{D^0}_{\rm CP} \rightarrow K^0_S \pi^0 + A^K_{\epsilon} \end{bmatrix}$$

$$A_{\rm CP} \text{ measurement}$$

Status of the $D^{0} \rightarrow K_{S}^{0}K_{S}^{0}$ Decays

Normalization mode cancels common systematics and common independent terms

Results & interpretation


- Optimized in the SR of M_D and ΔM (2.5 σ)
- $6 \times \mathcal{L}$ Generic MC samples used
- Signal scaled by $\mathcal{B}_{PDG} / \mathcal{B}_{MC}$ and \mathcal{L}
- Background scaled by correction factor data/MC in △M SB and ∠

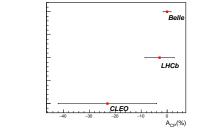
FOM =	Nsignal
	$\sqrt{N_{\rm signal} + N_{\rm background}}$

PDF : Signal (Gauss + Gauss + Bif-Gauss)+ Peak.
 Bkg(as signal)+ combinatorial Bkg. (Th. function)

Variables	cuts
dr	< 1 cm
dz	< 3 cm
KID	< 0.6
$ M_{\pi \pi} - m_{\kappa_{S}^{0}} $	< 15 MeV
M _D 0	[1.847, 1.882] GeV
P_*	> 2.2 GeV

- 85% Bkg. rejection with 26% sig. loss
- Multiplicity found 8.6% Best candidate selection performed with vertex of K⁰_S with 98% efficient.
- Peaking background : estimated in K⁰_S mass SB

Results...

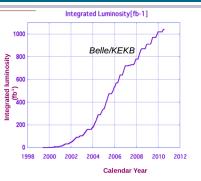

- selection efficiency : (11.04 ± 0.02)% (weighted according to E & L [(12.60 ± 0.02)% normalization mode]
- N= 5399 ± 87 , Araw = (+ 0.45± 1.53)%
- N= 537360± 833 , Araw = (+ 0.16 ± 0.14)%
- A_{CP} = (-0.02± 1.53 (stat. only))%
- ▶ *B* done @ P_{D^*} >2.5GeV (eff. (9.74 ± 0.02)% and (11.11 ± 0.02)%, and corresponding yields are 4755 ± 79 and 475439 ± 767)
- corrected efficiency for K_S^0 and π^0
- Systematics are dominated by external input

Source	A _{CP} (%)	B (%)
$D^0 \rightarrow K^0_S K^0_S$ PDF parametrization	±0.01	±0.3
$D^0 \to K_S^0 \pi^0$ PDF parametrization	± 0.00	±0.2
$D^0 ightarrow K^0_S K^0_S$ peaking background	±0.01	±0.6
$D^0 o K^{ar 0}_S \pi^{ar 0}$ peaking background	± 0.00	±0.03
$K^0/\bar{K^0}$ material effects	±0.01	-
K_{S}^{0} reconstruction efficiency	-	± 1.57
π^{0} reconstruction efficiency	-	±2.16
Quadratic sum of above	±0.02	±2.76
External input ($D^0 o K^0_S \pi^0$ mode)	±0.17	±3.30

Discussion

Most sensitive measurement

- getting closer to theory limit ($\leq 1.1\%$)
- Probing region of interest


Results

A_{CP} =
$$(-0.02 \pm 1.53 \pm 0.02 \pm 0.17)\%$$

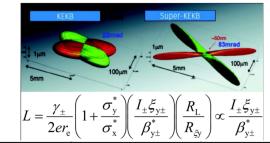
•
$$\frac{\mathcal{B}(D^0 \to K^0_S K^0_S)}{\mathcal{B}(D^0 \to K^0_S \pi^0)} = (1.101 \pm 0.023 \pm 0.030)\%,$$


 $\blacktriangleright \quad \mathcal{B}(D^0 \to K_S^0 K_S^0) = (1.321 \pm 0.023 \pm 0.036 \pm 0.044) \times 10^{-4}. \text{ [N. Dash et al. Phys. Rev. Lett. 119 (2017) 171801]}$

KEKB→ SuperKEKB

New physics opportunities :

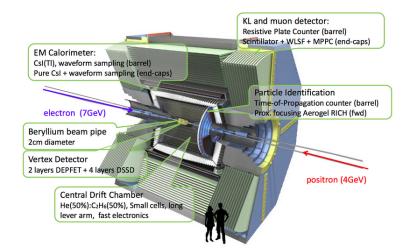
- Precise measurement of UT parameters
- Search for charged Higgs
- New sources of CP violation
- Lepton Flavour Violation in B and \(\tau\) decays
- New physics search in missing energy modes of B decays Search for Dark matter, etc..
- New QCD phenomena (XYZ, new states including heavy flavors) + more



11

$$L_{int} = 50 \text{ ab}^{-1} (50 \times \text{KEKB})$$

 $L_{peak} = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} (40 \times \text{KEKB})$


Status of the $D^0 \rightarrow K^0_S K^0_S$ Decays

Ingredients for Success

	KEKB design	KEKB Achieved: with crab	SuperKEKB	Unit
Energy	3.5/8.0	3.5/8.0	4.0/7.0	GeV
β_{v}^{*}	10/10	5.9/5.9	0.27/0.30	mm
$\beta_{\rm x}^*$	330/330	1200/1200	32/25	mm
E _x	18/18	18/24	3.2/5.3	nm
x-y coupling $(\varepsilon_y/\varepsilon_x)$	1	0.85/0.64	0.27/0.24	%
σ_{v}	1.9	0.94	0.048/0.062	μm
ξy	0.052	0.129/0.090	0.09/0.081	
σ_z	4	6-7	6/5	mm
Ĩ	2.6/1.1	1.64/1.19	3.6/2.6	А
N _{bunch}	5000	1584	2500	
Luminosity	1	2.11	80	10 ³⁴ cm ⁻² s ⁻¹
	Beam curre	nt: ×2 Beam size:	1/20	

Bellell Detector

Schedule

14

Phase 1 Phase 2 Phase 3 Physics run without QCS or Belle II with OCS and Belle II without VXD Background study Luminosity tuning Vacuum scrubbing Luminosity tuning $(target: 8 \times 10^{35} / cm^2 / s)$ **Basic** machine tuning (target: 1 x 10³⁴ /cm²/s) Finished in success Status of the $D^0 \rightarrow K^0_S K^0_S$ Decays

N. Dash

Belle II prospects of $D^0 o K^0_S K^0_S$

Improvement @ Belle II

- \blacktriangleright K_S^0 , π^0 and slow pions reconstruction efficiency
- Clean experimental environment
- The outer radius of the SVD detector has been significantly increased from 8.8 to 14.0 cm
- Large various of SVD will allow % more K⁰₀ candidates whose daughters have associated SVD hits

- Expect similar systematic error in Belle II
- irreducible sys. err. due to the neutral K interactions in the material (0.01 × 10⁻²)

15

- Large fraction of systematics will be reduced With higher statistics
- Dominant error arises from A_{CP} measurements of $D^0 \rightarrow K^0_S \pi^0$ errors on $D^0 \rightarrow K^0_S \pi^0$ will reduce with increased statistics at Belle II

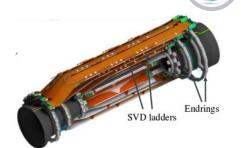
$$\sigma_{\textit{Bellell}}^{\textit{Total}} = \sqrt{(\sigma_{\textit{Stat.}}^2 + \sigma_{\textit{Syst.}}^2(\textit{red.})) \times (\mathcal{L}_{\textit{int}}^{\textit{Bellel}} / \mathcal{L}_{\textit{int}}^{\textit{Bellell}}) + \sigma_{\textit{ired.}}^2}$$

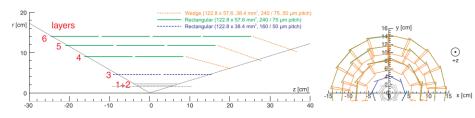
L	Statistically (%)	Systematically (%)		Total (%)
		Red.	irred.	
921 fb ⁻¹	1.53	0.17	0.01	1.54
5 ab ⁻¹	0.66	0.003	0.01	0.66
50 ab ⁻¹	0.21	0.03	0.01	0.21


- Expected precision on A_{CP} will be 0.2% @ Belle II (with same K⁰_S efficiency)
- Probe for NP

N. Dash

Belle II Vertex Detector


- A vertexing and inner tracking system:
- Determine the vertex position of the weakly decaying particles
- Precisely measure the track position and momentum for low p_T tracks
- Critical component for CPV measurement
- New vertex detectors: * PXD: 2-layer pixel detector based on DEPEET (Depleted P-channel Field Effect Transistor) technology. * SVD: 4-layer DSSD (Double Sided Silicon Detector)
- Smaller beam pipe radius =1cm (2cm → 1.5cm @ Belle)
- Larger outer radius : Improved K_S^0 acceptance
- Excellent performance (position resolution, efficiency)



Belle II Silicon Vertex Detector

- SVD is important for efficient reconstruction of low p_T tracks from D^{*} and K⁰_S
- 4 layers of DSSD sensors (DSSD: low material budget).
- Slant FW region (material budget reduction)
- Angular acceptance : $17^0 < \theta < 150^0$
- Radii : 38 mm, 80 mm, 115 mm & 140 mm
- SVD length : ~ 650 mm
- Excellent time resolution (σ~2-3 ns), impact parameter (~20 μm)

Beam Background simulation

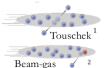
- Smaller beam pipe radius =1cm (2cm 1.5cm @ Belle)
- Larger outer radius : Improved K⁰_S acceptance
- Excellent performance (position resolution, efficiency) confirmed in beam test at DESY.
- Among the technical challenges at Belle2, there are beam backgrounds
- In Belle/KEKB, unexpected backgrounds burnt a hole in the beam pipe and damaged inner detectors
- Dangerous at SuperKEKB (Especially SVD)
- · Temporary damage or faults in electronics
- Obscure physics processes
- Fake interesting physics signals

Phase 1 (no collisions)

Touschek scattering:

- intra-bunch scattering process
- dominant with highly compressed beams
- 20 times higher

Beam-gas scattering:


 Bremsstrahlung (negligible) & Coulomb interactions (up to 100 times higher) with residual gas atoms & molecules

Synchrotron radiation:

 emission of photons by charged particles (e*e*) when deflected in *B*-field

Factor \sim 40-50 in the luminosity

Higher backgrounds

Radiative Bhabha 2-photon-processes

Phase 2 (collisions)

Radiative Bhabha process:

photon emission prior or after Bhabha scattering interaction with iron in the magnets leads to neutron background

Two photon process:

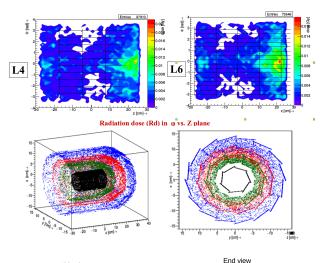
 very low momentum e⁺e⁻ pairs via e⁺e⁻->e⁺e⁻e⁺e⁻e⁺e⁻

18

 increased hit occupancy in inner detectors

Beam Background simulation

QED Background : MC Campaign used


- Coulomb LER
- Touschek LER
- Touschek HER
- Radiative Bhabha (RBB) LER
- Radiative Bhabha HER
- Two Photon

Layer	No. of Ladders Sensors/Ladd	
L3	7	2
L4	10	3
L5	12	4
L6	16	5

19

· Radiation dose study in each background type

Skin plots & Two photon background map

20

Side view

Status of the $D^0 \rightarrow K^0_S K^0_S$ Decays

Conclusion

- Belle II will further explore these opportunity with a target integrated luminosity of 50ab⁻¹
- Detector to start operation in early 2018 (phase 2) and start taking physics data beginning 2019 (phase 3)
- Result of $D^0 \to K^0_S K^0_S$ at Belle is consistent with no CPV and improved the precision
- A_{CP} result is a significant improvement over the previous measurements of CLEO and LHCb (about a factor 4)
- The most precise branching fraction over world average and BESIII
- Prospects for these measurements at Belle II were also discussed, in this decay mode cases the sensitivity would reach a 0.2 % level
- Upgraded Belle II detector will face the higher level of backgrounds
- In SVD 2-γ QED background contributed more as expected earlier

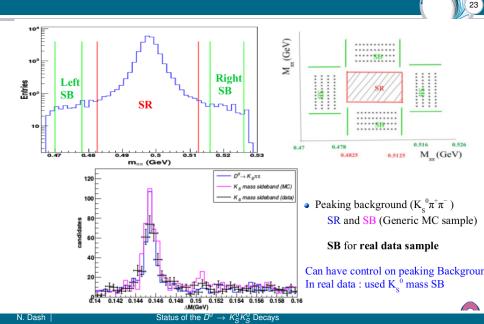
BACKUP

CPV in charm :

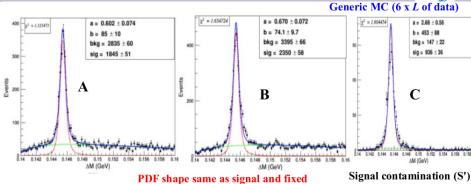
Experimental results on ΔA_{CP}

Experiment	$\Delta A_{CP}(\%)$
BaBar	$+0.24 \pm 0.61 \pm 0.18$
Belle preliminary	$-0.87 \pm 0.41 \pm 0.06$
CDF	$-0.62 \pm 0.21 \pm 0.10$
LHCb (2014)	+0.14 \pm 0.16 \pm 0.08
LHCb (2016)	$-0.10 \pm 0.08 \pm 0.03$
HFAG	-0.134 ± 0.070

CP violation observables in mixing/induced: A_{Γ} , y_{CP}


CP violation in mixing

$$A_{\Gamma} = \frac{\hat{\Gamma}(D \to f) - \hat{\Gamma}(\bar{D} \to \bar{f})}{\hat{\Gamma}(D \to f) + \hat{\Gamma}(\bar{D} \to \bar{f})} = \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi - \underbrace{\left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi}_{CP \text{ violation in interference}} \right]$$

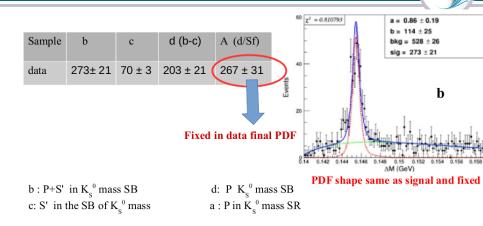

In the absence of direct CP violation, y_{CP} is given by

$$y_{CP} = \frac{\hat{\Gamma}(K^{-}\pi^{+})}{\hat{\Gamma}(K^{+}K^{-})} - 1 = \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) y \cos \phi - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) x \sin \phi$$

Peaking Background estimation

Peaking Background...

the SB considered

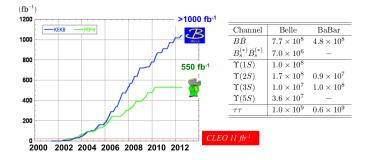

Sample	А	В	С	D(B-C)	Scale factor Sf (D/A)
6 * MC	1845± 51	2350± 58	936± 36	1414± 68	0.76 ± 0.04

A : P in K_s^0 mass SR (tagged) C: S' in the SB of K_s^0 mass B: P+S' in K_s^0 mass SB

D: P in K_s⁰ mass SB

Peaking Background...

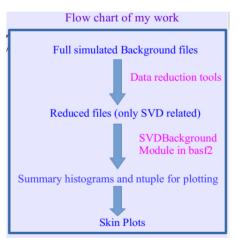
Signal contamination (S') in the SB considered after scaling with L and BF ratio in PDG and MC of S $\,$


```
BF of S in PDG 1.8 \times 10^4 and in MC 4.0 \times 10^4
```

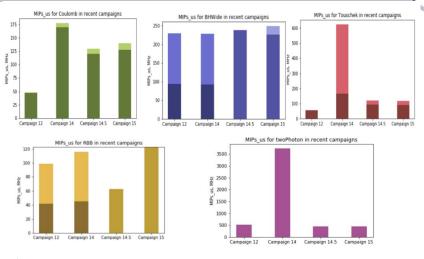
Belle Detector

Why an e^+e^- Machine?

Low backgrounds, high trigger efficiency, excellent γ and π⁰ reconstruction (and thus η, η', ρ⁺, etc. reconstruction), high flavor-tagging efficiency with low dilution, many control samples to study systematics


- Due to low backgrounds, negligible trigger bias, and good kinematic resolutions, Dalitz plots analyses are straightforward. Absolute branching fractions can be measured. Missing energy and missing mass analyses are straightforward.
- systematics quite different from those at LHCb. If true NP is seen by one of the experiments, confirmation by the other would be important.

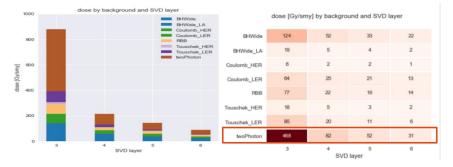
SVD beam background


27

SVD Background simulation :

- Huge chunk of backgrounds
- Studied only backgrounds related to SVD
- Observed Energy deposition, N.F and occupancy
- Validate statistics
- Compare the results with different MC

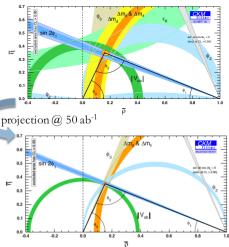
Backgrounds in recent campaigns



28

- consistent official simulation results though the big two-photon background with 15th campaign 13
- show that the two-photon background is important and more abundant than initially expected

Status of the $D^0 \rightarrow K^0_S K^0_S$ Decays


Backgrounds in SVD layer

- 2-photon background is the most important background in SVD
- Official simulation consistent with previous results
- Big 2-photon background from 14-th campaign was not confirmed

Research Plan

Unitarity Triangle

- Least well-known of the unitarity triangle angles
- $\bullet_{3} = \gamma \equiv \arg\left(-V_{ud}V_{ub}^{*}/V_{cd}V_{cb}^{*}\right)$
- precise measurement of γ is a crucial test of the SM
- current precision is slightly better than 5 (much larger than the SM prediction)
- Belle II projection pushing this down to 1 (based on simulation)
- γ is measured through a combination of simple charge-specific decays rates of rare channels
- Not crucially depend on the vertexing performance
- measure γ in one of the most abundant channels
- chose once the accelerator and detector performances are assessed more precisely (later 2018/start 2019 data)

Status of the $D^0 \rightarrow K^0_S K^0_S$ Decays