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Introduction and motivation
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QCD crossover

I Lattice QCD is the only rigorous technique we know to
compute the thermodynamics of QCD in the crossover region

I We know quantitatively from Lattice calculations that for
2 + 1 flavor, the transition from hadronic matter at low T to
the QGP at high T is a crossover around 145− 165MeV
[Brookhaven/HotQCD, TIFR, Wuppertal-Budapest, Bielefeld,
collaborations]

I But it is challenging to compute transport properties on the
lattice

I Finite µ is also challenging but significant progress made. For
eg. [Datta, Gavai, Gupta (TIFR group); HOTQCD; Bielefeld
group]
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Simpler theory for long range correlations?

I The chiral condensate 〈ψ̄ψ〉 → 0 in the chiral limit at the
critical temperature Tc . For finite quark mass, mq, the
condensate drops rapidly near the crossover temperature Tco

I If a quark description valid near the crossover then this implies
that the quarks are light near Tco

I For finite mq, there could be other light degrees of freedom.
We assume here that there are none
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The NJL model

I Can one write a simpler effective model that captures the
correlations on length scales larger than 1/T?

I NJL is a simple, and widely studied EFT model that captures
the physics of the chiral crossover ([Nambu, Jona-Lasinio
(1961)])

I It can be justified on the assumption that quarks are light
degree of freedom near the crossover

I It captures qualitative features like a rapid rise in the pressure
and free energy near the crossover
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The NJL model

I The parameters of the model are fixed by using the vacuum
properties for example π mass, and π decay constant in
vacuum where it is not justified

I The interaction between quarks is typically taken to be of a
very specific form

L = λ[(ψ̄ψ)2 + (ψ̄iγ5taψ)2]

I Since the NJL model is not valid beyond energies of the order
of T , it is not appropriate to use it to calculate pressure,
energy density etc.

I From this point of view more natural to compare correlation
functions on length scales larger than 1/T
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Additional fields

I Additional light fields can be introduced (eg. PNJL model
(See Rajarshi’s talk))

I Taking the EFT the point of view all terms consistent with
symmetries upto a certain order should be added

I Not appropriate to match thermodynamic properties but long
distance properties

I Matching should be done near the crossover
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Formalism

8 / 43



The Euclidean action
I

L = d0T 4
0 + ψ/∂4ψ − µψγ4ψ + d4ψ/∂ iψ + d3T0ψψ + L6

I

L6 = +
d61

T 2
0

[
(ψψ)2 + (ψiγ5taψ)2

]
+

d62

T 2
0

[
(ψtaψ)2 + (ψiγ5

ψ)2
]

+
d63

T 2
0

(ψγ4ψ)2 +
d64

T 2
0

(ψiγiψ)2 +
d65

T 2
0

(ψγ5γ4ψ)2 +
d66

T 2
0

(ψiγ5γiψ)2

+
d67

T 2
0

[
(ψγ4t

a
ψ)2 + (ψγ5γ4t

a
ψ)2

]
+

d68

T 2
0

[
(ψγ i taψ)2 + (ψγ5

γ
i taψ)2

]

+
d69

T 2
0

[
(ψiΣi4ψ)2 + (ψiγ5Σij t

a
ψ)2

]
+

d60

T 2
0

[
(ψiΣi4t

a
ψ)2 + (ψΣijψ)2

]
+ O(

1

T 5
0

(ψψ)3) ,

I There are no dimension 5 terms (for eg. ψ̄(∂)2ψ) consistent
with the SU(2)A symmetry

I Dimension 6 terms with derivatives in the mean field
approximation ψ̄(∂/)3ψ have also been listed but don’t play a
role in our calculation. This is because we make a mean field
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Symmetry constraints

I Time and space distinguished: SO(3, 1)→ SO(3). For
example, the kinetic term is

ψ/∂4ψ + d4ψ/∂iψ

I Similarly, all vector interaction terms can have different spatial
and temporal coefficients

I All interaction terms with chiral symmetry written down upto
dimension 6
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Parameters of the theory

I Take the energy cutoff to be of the order of T or slightly
larger. We will use dim-reg with a renormalization scale
M ∼ πT

I T0 sets the scale of the overall problem

I mq = d3T0 acts as the bare quark mass, but is not fitted to π
mass at T = 0

I Seems hopeless, 12 unknown parameters
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Mean field approximation

I But sectors of observables with only specific linear
combinations of d ’s emerge

I For example, in the mean field approximation

ψ̄αψβ → δαβ〈ψ̄ψ〉

I

LMFT = −N T 2
0

4λ
Σ2 + ψ/∂4ψ − µψγ4ψ + d4ψ/∂ iψ + mqψψ + d0T 4

0

I Including all the Fierz transformations (N = 12 for 2 flavor),

λ = (N + 2)d61 − 2d62 − d63 + 3d64 + d65 − 3d66

+ d67 − d68 + 3d69 − 3d60

I m = mq + Σ
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Parameters of the theory

I Tc is the value for the critical point in the chiral limit. Take
the scale setting parameter T0 = Tc

I (d4)3

λ = 1
12

I Observables will be fit at one point below Tc

I Parameters mq = d3T0, d4

I M is the renormalization scale in the MS scheme

I

−Ω =
NT 2

0 Σ2

4λ
+

Nm4

64π2(d4)3

[
log

(
m2

(d4)2M2

)
− 3

2

]
+

NT

2π2(d4)3

∫ ∞
0

dpp2 log

[
1 + exp

(
−E

T

)]
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Order parameter

I By minimizing the free energy we can find the order
parameter m

I In the plot the width is associated with varying
M ∈ (1.25πT0, 1.75πT0)
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Current correlations and screening masses

I Long distance behavior of the correlations of currents (for eg.
Aaµ = ψ̄γµγ5 ta

2 ψ) can be used to extract the screening
masses of various channels

I We first focus on the axial vector correlations in Euclidean
field theory so that we can match to lattice data
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Fluctuations of the order parameter

I In mean field ψαψ̄β → 1
N 〈ψαψ̄α〉δαβ

I Fluctuations ψ → e iπ
aτ aγ5/(2f )ψ, ψ̄ → ψ̄e iπ

aτ aγ5/(2f )

I This includes the π’s in the Hubbard-Stratonovich
transformation

I Therefore, ψαψ̄β → e
iπaτ aγ5/(2f )
β′β 〈ψβψ̄α〉e

iπaτ aγ5/(2f )
αα′

I At very long wavelengths an effective lagrangian for the π’s is
applicable

I Lf =
c2T 2

0
2 π2 + 1

2 (∂0π)2 + c4

2 (∇π)2 + c41

8 π
4 + ··
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π lagrangian

I We start with the two point function

I Lf =
c2T 2

0
2 π2 + 1

2 (∂0π)2 + c4

2 (∇π)2
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Correlation functions

I Correlations of currents related to π properties

I Two illustrative examples

I limq4→0

∫
d4xe iqx〈Pa(x)Pb(0)〉 = ( f

2mq
)2c4 δabq4

q2+M2
π

I limq4→0

∫
d4xe iqx〈Jai5 (x)Jbi5 (0)〉 = ((2f )2)c4 δabq2

q2+M2
π

I M2
π = c2T 2

0 /c
4 related to the screening length

I Static π − π correlator decays as ∼ e−Mπr

I u =
√
c4 is the π “speed”

I From a combination of the static correlators one can extract
f , c4, Mπ

I [Brandt, Francis, Meyer, Robaina (2014)]
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Correlation functions

I A finite temperature generalization of GOR relation is satisfied

I c2T 2
0 = −Nmq〈ψ̄ψ〉

f 2

I [Son, Stephanov (2002)]

I We can compute f , c4, Mπ in the EFT model and compare to
the lattice data

I Because of approximate chiral symmetry, can show that the
same combination of d6’s determine π properties

19 / 43



Interesting behaviour in the chiral limit

I mq → 0 implies Mπ → 0. Well known from the Goldstone
theorem

I Interesting behaviour of c4 at Tc in the chiral limit:

c4 ∝
∫

p2dp

1 + exp(p/T )
[
2

p
− 1

T (1 + exp(p/T ))
] = 0
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Results
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Inputs
I Matching u and Mπ at T = 0.84Tco

I Error in T associated with Tco = 211(5)MeV
I Input from [Brandt, Francis, Meyer, Robaina (2014)] (figure

below). Heavy π
I Fitted values d3 = 0.57

[
±6(input)

][
±3(scale)

][
±3(T)

]
,

d4 = 1.20
[
±6(input)

][
±4(scale)

][
±(4)T

]
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u

I Pion velocity
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Mπ

I Pion Debye screening mass
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I Also see [Ishii et. al. (2013); S Cheng, S Datta et. al. (2011)]
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f

I Pion constant f

I An independent prediction
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Tc

I The peak of the chiral susceptibility in the EFT model occurs
at Tco = 1.24Tc

I Taking Tco = 211(5), we get Tc = 170± 6

I Larger than the value of Tc from the lattice for 2 + 1 flavors

I However for 2 flavors this agrees with the lattice prediction
[Brandt et. al. (2013)]
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π four point function

I L4 = c41

8 π
4
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c41

I Pion four point function
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Towards finite µ

I If we use the standard modification H → H − µN
I In dim-reg an interesting result that Tc(µ)2 + 3

π2µ
2 = T 2

0 in
the chiral limit

I In particular, implies that for small µ,

Tc(µ) = Tc(0)− 1
2κ

µ2

Tc (0) +O(µ3)

I Tc(0)κ = 3
π2

I Thus the mean field prediction is roughly 5− 10 times the
lattice prediction for 2 + 1 flavors [Bielefeld, HotQCD,
collaborations]

I Several corrections in the EFT required at finite µ
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Pπ: a qualitative comment

I Pressure of the π

Pπ = − 3(c2T 2
0 )2

64π2(c4)(3/2)
[log(

c2T 2
0

c4M2
)− 3

2
]

− 3T

∫
d3p

(2π)3
log(1− eE

π/T )

I Eπ =
√

c4p2 + c2T 2
0

I If c4 is small the pressure is large. Energetic cost is small
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Pπ
I Rise in the pressure of the π because of the thermal piece

−3T

∫
d3p

(2π)3
log(1− eE

π/T ) (1)

as u decreases
I Disclaimer: Not rigorous; a curiousity
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Real time dynamics

32 / 43



Real time dynamics

I One interesting application of the formalism is to compute
real time quantities in the small frequency and small
momentum limit

I A plausible assumption is that this can be obtained from the
analytic continuation of the fermionic lagrangian

I The main change in analysis is that instead of the imaginary
time propagator, we use the real time propagator for the
fermions

[
i

i/p −m + iε
− 2πδ(p2 + m2)nF (p0)(i/p + m)]

I nF (E ) = 1
exp(E/T )+1

I Note that d4 is hidden in the definitions, /p = −p0γ0 + d4piγ i
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Real time dynamics

I For example let us now consider 〈Jai5 (x)Jai5 (0)〉 with x in
Minkowski space

I Using Jai5 ∝ f ∂iπ
a we obtain the following

I At one loop order the diagrams are the same with the only
difference now that we need the real time propagators for the
fermions

I The π propagation in real time formalism∫
d4xe iqx〈πa(x)πb(0)〉|fermionic continuation = iδab

A(q0)2−Bq2−C
I Compare to the rotation to imaginary time∫

d4xe iqx〈πa(x)πb(0)〉|πcontinuation = iδab

(q0)2−c4q2−c2T 2
0

I MP
π =

√
C
A (This is what Sourendu called the kinetic mass)

I Subtlety related to order of limits: can not use the static limit
where q0 → 0 first

I Preliminary results [Ongoing with S. Gupta]
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Pole mass of π
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Salient features

I The pole mass differs in the static and the dynamic limit

I The dynamic limit is relevant for transport properties like
conductivity, where limq→0 is taken before limω→0

I At one loop order there is no damping at small q. One needs
to go to three loops (in the fermions) to obtain π damping
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Conclusions

I The EFT based approach can be used to calculate long
distance correlation functions in both Euclidean and
Minkowski space

I In particular we analyze the modification of the π properties
near the crossover

I Qualitatively, note that the medium modification of the
properties of hadrons (π), in particular the reduction of the
“speed” u just below Tc

I Can be used to calculate dynamical properties
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Backup slides
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Screening mass of π
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Speed of π
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f of π
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Outputs
I By fitting u and Mπ parameters we obtain the fermionic

parameters
I Uncertainty associated with M
I Different boxes associated with varying Tco in the error band
I Useful if the fermionic parameters do not vary rapidly with T
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Free energy expression

I

Ω = −NT 2
0 Σ2

4λ
−N I0

I

I0 =
T

2

∑
p4=(2n+1)πT

∫
d3p

(2π)3
log(

m2 + p2 + (p4)2

T 2
)

=

∫
d3p

(2π)3

(
Ep + log[1 + exp(−Ep/T )]

)
I Ep =

√
(d4)2p2 + m2

I I0 =
m4

64π2(d4)3 [−3
2 − log( (d4)2M2

m2 )] + 1
2π2

∫
dpp2log[1 + exp(−Ep/T )]
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