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Boston University

▪ Private, non-profit university:
▪ Urban setting in major academic/metro area

▪ 17,000 undergraduate students

▪ 15,000 graduate students

▪ 4,000 faculty

▪ 18 schools and colleges

▪ Major research university

▪ Department of Electrical and

Computer Engineering:
▪ 54 faculty

▪ 465 undergraduate students

▪ 221 Master’s students

▪ 144 PhD students
Located in the Photonics Center

View of downtown across the Charles River



Main ECE research areas
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Information and Data Sciences 

Group (ids.bu.edu):

• 20 faculty

• 50 PhD students

http://ids.bu.edu/
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Moving assembly line (1913)
Full automation (1990s)

2019
2030?



Paradigm shift

Energy only ?

Can we better exploit this opportunity?
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1902 2000

2019

?

2030?



Lighting-Enabled Systems & Applications
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• NSF Engineering Research Center

• $37M from over 10 years

• 3 universities

• 24 industrial members



Leveraging LEDs for …
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Energy Savings 

Health Benefits

Productivity Gains
Bit-rate up to 1Gb/s for a 

focused, directional beam

Much lower rates for 

diffused light



Context: Visible Light Communication
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No line

of sight

Needed:

• person’s location

• body orientation

• type of activity

Other applications:

• Lighting control

• HVAC control

• Robotics

(people avoidance)



Clear goal, but one caveat …

▪ Activity localization and recognition studied extensively over decades

▪ Excellent performance, even under challenging conditions, but …

Privacy-preserving localization (Konrad)
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no privacyrequires cameras



Approach I: Reversible methods

▪ Data scrambling:

▪ Typical approach: data permutation

▪ Domain: image, transform, bitstream

▪ Vulnerable to attacks [Macq and Quicquater, Proc. IEEE, 1995]

▪ Data encryption:

▪ Naïve methods: video bitstream = text data

▪ Cryptographic algorithms: DES, AES, RSA

▪ Extracting original information from encrypted data is challenging

▪ Attacks are difficult but recently deep learning was successful

in recognizing encrypted images [Wang et al., MSSP 2017,

Bachrach et al., ICML 2016]

Privacy-preserving localization (Konrad)
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Approach II: Irreversible methods

Data degradation:

▪ Before acquisition (optically):

▪ After acquisition (digitally):

Privacy-preserving localization (Konrad)
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[Pittaluga et al., CVPR, 2015]
Coarse control due to optics

[Winkler et al., AVSS, 2014]
Potential for eavesdropping



Alternative approach: ultra-low res
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Challenge: Localize and recognize activities at extremely-low resolution (eLR)

Benefits:    - eavesdropping will not threaten privacy

- low data transmission and computing costs



Task I: Person localization
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No line

of sight

Not difficult with

video camera(s)

How about ``single-

pixel’’ cameras ?

1 sensor reading

per frame



Testbed

▪ 6 single-pixel visible-light sensors

(Taos-AMS TCS 34725)

▪ Area: 2.37m x 2.72m

▪ Data-driven approach → Ground truth needed:

Hollywood-style motion capture (IR light + markers)

Privacy-preserving localization (Konrad)
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OptiTrack



Data-driven localization: First train
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Ground-truth locations readingsSingle-pixel sensor light readings

Simultaneous recording:

Machine Learning



Then, test

▪ Coarse-grained localization (classification):

▪ Area divided into cells (3 x 3 grid)

▪ Each cell is a class

▪ SVM classifier  (RBF kernel)

Privacy-preserving localization (Konrad)
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▪ Fine-grained localization (estimation):

▪ Real-valued location coordinates estimated

▪ Separate estimation for X and Y coordinates

▪ SVM regressor (RBF kernel)



Usage scenarios and validation

▪ Dataset
▪ Several random 90-second walks by 4 different people

▪ Ground-truth locations: OptiTrack system

▪ Public setting (e.g., conference room)
▪ New users appear often

▪ System cannot be trained on all users

▪ Leave-one-person-out  cross-validation

▪ Private setting (e.g., home)
▪ Same set of users

▪ System can be trained on all users

▪ Leave-one-walk-out cross-validation

Privacy-preserving localization (Konrad)
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Coarse [CCR] Fine [localization error]

Public setting

67% 35cm (±25cm)

Private setting

72% 31cm (±22cm)

[Roeper et al., IEEE-AVSS, 2016]



Results: tracking

Privacy-preserving localization (Konrad)
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Red – estimate from 6 single-pixel sensors



Task II: Activity Recognition
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No line

of sight

Working with a tablet



State-of-the-art

▪ 30-pixel humans: optical flow, NN classifier, optical-flow correlation as 

distance metric [Effros et al., 2003]

Optical flow unreliable at lower resolutions

▪ 32 x 48 images: Hu moments from directional history images, kNN classifier 

[Ahad et al. 2010]

Poor performance at lower resolutions

▪ 20 ceiling-mounted binary IR sensors: short-duration averages of binary 

values, SVM classifier [Tao et al. 2012]

Unrealistic scenario leveraging strong correlation between action and location

Can we go even lower in resolution but maintain recognition performance?

Privacy-preserving localization (Konrad)
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Phase I: Simulation

Virtual testbed:

Privacy-preserving localization (Konrad)
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▪ Unity3D©:

- 3-D scene,

- avatars,

- animation by human motion

▪ Kinect v2: motion capture



Step 1
Simulate a virtual 3-D scene and sensors

Privacy-preserving localization (Konrad)
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Step 2

Privacy-preserving localization (Konrad)
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Record humans with Kinect and extract skeletons



Step 3

Animate avatars using recorded skeletons

Privacy-preserving localization (Konrad)
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Step 4

Capture data from the virtual scene:

▪ at various resolutions,

▪ at various locations from various angles (field of view), 

▪ of different type (luminance, color, depth),

▪ …

Privacy-preserving localization (Konrad)
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Collected actions

▪ 12 subjects:
▪ 7 male,

▪ 5 female

▪ 9 actions typical

of a seminar-room

scenario

▪ Single avatar in FOV

Privacy-preserving localization (Konrad)
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Features

▪ Elaborate features cannot be extracted (too few pixels)

▪ Feature = grayscale value at each pixel:

𝐼𝑖,𝑗,𝑘 𝑡

(𝑖, 𝑗) spatial location

𝑘 camera number

𝑡 time instant

▪ Mean-variance equalization to focus on

dynamics and reduce impact of clothing

Privacy-preserving localization (Konrad)
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Classification

▪ Given: query sample መ𝐼 and dictionary samples:

𝑉𝑚,𝑙 𝑙 = 1,… , 𝐿, 𝑚 = 1,… ,𝑀𝑙

▪ Find nearest neighbor:

under l1 distance metric:

Privacy-preserving localization (Konrad)
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𝑑( መ𝐼, 𝑉) = 

𝑘



𝑡



𝑖



𝑗

| መ𝐼𝑖,𝑗,𝑘 𝑡 − 𝑉𝑖,𝑗,𝑘 𝑡 |

# of classes

# of samples

per class

ෝ𝑚, መ𝑙 = argmin
𝑚,𝑙

𝑑( መ𝐼, 𝑉𝑚,𝑙)

Winning class



Results

▪ CCRs around 90% possible at privacy-preserving resolutions

▪ No need for high frame rate (for these actions)

▪ More sensors needed at extremely low spatial resolutions

Privacy-preserving localization (Konrad)
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Description Configuration CCR

Best 10 x 10, 30 Hz, 5 cams 89.60%

Low frame rate 10 x 10, 2 Hz, 5 cams 86.49%

Single camera 10 x 10, 30 Hz, 1 cam 77.96%

Low spatial resolution 1 x 1, 30 Hz, 5 cams 75.50%

Everything low 1 x 1, 2 Hz, 1 cam 48.39%

[Dai et al., IEEE-ICIP, 2015]



Phase II: Real-camera data

▪ So far, proof of concept validated on synthetic data:

▪ no noise,

▪ no illumination variations,

▪ known subject location.

▪ Test on a real-camera dataset?

▪ IXMAS-ROI actions dataset (64 x 48 pixels, 25 Hz):

▪ 12 actions, 10 subjects, 5 cameras.

Privacy-preserving localization (Konrad)
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IXMAS-ROI results
▪ Various decimation factors

▪ 7-10% CCR drop compared to avatar data, but …

the same trends are observed

Privacy-preserving localization (Konrad)
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Description Configuration CCR

Best 16 x 12, 25 Hz, 5 cams 80.00%

- 8 x 6, 25 Hz, 5 cams 77.78%

- 4 x 3, 25 Hz, 5 cams 76.94%

Low frame rate 16 x 12, 2 Hz, 5 cams 74.35%

Single camera 16 x 12, 25 Hz, 1 cam 67.11%

Low spatial resolution 1 x 1, 25 Hz, 5 cams 63.33%

Everything low 1 x 1, 2 Hz, 1 cam 29.21%

[Dai et al., CVPR-AMFG, 2015]



Phase III: Physical testbed
▪ 12 single-pixel sensors, 10 fps

▪ POE data transmission and power

▪ Real-time algorithm in Matlab on a laptop

Privacy-preserving localization (Konrad)
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Task III: Body orientation estimation

Privacy-preserving localization (Konrad)
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No line

of sight

Where is this

tablet?



Study case: Head pose estimation

Traditional methods

Privacy-preserving localization (Konrad)
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Full resolution Ultra-low resolution

Our approach



Features

▪ Histogram of Gradients (HOG):

𝒇 = concatenated histograms

▪ New gradient-based pixel-wise feature:

Privacy-preserving localization (Konrad)
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Resolution Cell Size Block Size Length of 𝒇

10  10 2  2 (pixel) 2  2 (cell) 576

5  5 1  1 (pixel) 2  2 (cell) 576

3  3 1  1 (pixel) 2  2 (cell) 144

Resolution Length of  𝒇

10  10 400

5  5 100

3  3 36

𝒇 = [𝒈1,1, 𝒈2,1, 𝒈3,1, …]

𝒈𝑖,𝑗 =
𝜕 መ𝐼𝑖,𝑗
𝜕𝑥

,
𝜕 መ𝐼𝑖,𝑗
𝜕𝑦

, 𝛻 መ𝐼𝑖,𝑗 , arg(𝛻 መ𝐼𝑖,𝑗)



Estimation via non-linear regression

▪ Support Vector Regression: given a training set { 𝒇𝑗 , 𝜃𝑗 , 𝑗 = 1,… ,𝑁}, 

learn functional mapping:

𝜃 𝒇 = 

𝑗=1

𝑁

𝑤𝑗𝐾(𝒇𝒋, 𝒇) + 𝑏

by minimizing a regularized 𝜖–insensitive loss function:

min
𝑏,𝒘

1

2
𝒘 2 + 𝐶

𝑗=1

𝑁

max(0, |𝜃𝑗 − 𝜃 𝒇𝑗 | − 𝜖)

▪ One regressor for each pose angle: pitch, yaw, roll

Privacy-preserving localization (Konrad)
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Results: Mean-Absolute Error on 15k images

Privacy-preserving localization (Konrad)
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≈5°at 640x480 pixels

≈10°at 10x10 pixels

[Chen et al.,

IEEE-SSIAI, 2016]

≈11°at 5x5 pixels

≈13°at 3x3 pixels

Grad better than HOG



Localization thus far: Passive light sensing

▪ Light sources not controllable (incandescent, fluorescent)

▪ Algorithms rely on reflected light measurements: high sensitivity to 

changes in illumination

Privacy-preserving localization (Konrad)
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Ambient

Light

Light Source Light Source
Light Sensors

Reflected 

Light

Microprocessor

Floor



Alternative localization: Active light sensing

▪ Precisely-modulated LED light sources (frequency > 60 Hz)

▪ Algorithms use both reflected light and modulation pattern

▪ Robust to illumination changes

Privacy-preserving localization (Konrad)
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Ambient

Light

Light Sensors

Floor

Modulated

Light

Modulated

Light

Light

Source

Light

Source

Reflected 

Light

Microprocessor



▪ Relationship between light modulation and sensor response is captured by 

light transport matrix 𝐴

▪ Object presence changes light transport matrix 𝐴

▪ Algorithm estimates floor reflectivity change from the change in light 

transport matrix

▪ Region of largest reflectivity change identifies object location

Algorithm overview
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Light transport matrix 𝐴

𝐴(1,1) ⋯ ⋯
⋮ 𝐴(𝑖, 𝑗) ⋮
⋯ ⋯ 𝐴(𝑁𝑠, 𝑁𝑓)S

en
so

rs
Sources

Object Floor reflectivity change

Object location

∆𝐴(1,1) ⋯ ⋯
⋮ ∆𝐴(𝑖, 𝑗) ⋮
⋯ ⋯ ∆𝐴(𝑁𝑠, 𝑁𝑓)S

en
so

rs
Sources

Light transport matrix change ∆𝐴



Light transport matrix 𝐴

Source 𝑗 Sensor 𝑖
Light source

Light sensor

Floor

Ceiling
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Light transport matrix 𝐴

Source 𝑗 Sensor 𝑖

Floor

𝑓( 𝑗)
Reading: s(𝑖)

𝑏(𝑖)

𝑠 𝑖 =

Sensor 𝑖
reading

Ambient

light

Source 𝑗
intensity

Light contribution

Source 𝑗 → Sensor 𝑖

Ambient

light

+𝑏 𝑖

𝑓 𝑗 𝐴(𝑖, 𝑗)

Source 𝑗′



𝑗

𝑓 𝑗 ∙ 𝐴(𝑖, 𝑗)
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𝑠(1)
⋮

𝑠(𝑖)
⋮

𝑠(𝑁𝑠)

=

𝐴(1,1) ⋯ ⋯
⋮ 𝐴(𝑖, 𝑗) ⋮
⋯ ⋯ 𝐴(𝑁𝑠, 𝑁𝑓)

𝑓(1)
⋮

𝑓( 𝑗 )
⋮

𝑓(𝑁𝑓)

+

𝑏(1)

⋮

𝑏(𝑁𝑠)

𝒔 = 𝐴 𝒇 + 𝒃
𝒔 + ∆𝒔 = 𝐴 𝒇 + ∆𝒇 + 𝒃

∆𝒔 = 𝐴 ∆𝒇

∆𝒔(𝑡1) ⋯ ∆𝒔(𝑡𝑛) = 𝐴 ∆𝒇(𝑡1) ⋯ ∆𝒇(𝑡𝑛)

Estimating matrix 𝐴 via light modulation

Perturbation

Source 𝑗Sensor 𝑖

Ambient light

∆𝑆 ∆𝐹 (designed)

⇒ 𝐴 = ∆𝑆∆F T(∆𝐹∆F T)−1
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Light transport matrix 𝐴 in detail

Source 𝑗 Sensor 𝑖

Floor

= න
(𝑥,𝑦)

𝑑𝑥𝑑𝑦
Light contribution

Source 𝑗 → Sensor 𝑖

(𝑥, 𝑦)

Albedo: 𝛼(𝑥, 𝑦)
𝑦

𝑥

Floor

albedo

Assumption: Lambertian floor

𝐴 𝑖, 𝑗

Function of

room geometry

𝐶(𝑖, 𝑗;∗,∗): Map of floor contributions 

to the sensor reading

𝐶 𝑖, 𝑗; 𝑥, 𝑦 𝛼 𝑥, 𝑦
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Initial state (empty):    𝐴0 𝑖, 𝑗 = 𝐶(𝑥,𝑦) 𝑖, 𝑗; 𝑥, 𝑦 𝛼0 𝑥, 𝑦 𝑑𝑥𝑑𝑦

New state (occupied):  𝐴 𝑖, 𝑗 = 𝐶(𝑥,𝑦) 𝑖, 𝑗; 𝑥, 𝑦 𝛼 𝑥, 𝑦 𝑑𝑥𝑑𝑦

Change:          𝐴 𝑖, 𝑗 − 𝐴0 𝑖, 𝑗 = 𝐶(𝑥,𝑦) 𝑖, 𝑗; 𝑥, 𝑦 𝛼 𝑥, 𝑦 − 𝛼0 𝑥, 𝑦 𝑑𝑥𝑑𝑦

Matrix-vector form:

∆𝑨 = 𝑪

▪ Known: ∆𝑨, 𝑪;  solve for floor albedo change ∆𝜶 → location of change

Change in 𝐴 Change in Floor Albedo

∆𝐴(𝑖, 𝑗) ∆𝛼 𝑥, 𝑦

∆𝜶
source-

sensor

pairs

(𝑖, 𝑗)

floor positions (𝑥, 𝑦)

floor

positions

(𝑥, 𝑦)

vector matrix vector

source-

sensor

pairs

(𝑖, 𝑗)
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▪ Step 0: Ridge regression over the whole floor

[Zhao et al., IEEE-ICASSP, 2017]

∆𝜶0
∗= arg min

∆𝜶
( ∆𝑨 − 𝑪∆𝜶 𝑙2

2
+ 𝜎 ∆𝜶 𝑙2

2
)

▪ Step 1: Threshold → coarse localization

𝑄 = 𝑥, 𝑦 : ∆𝜶0
∗(𝑥, 𝑦) ≥ 𝜏

▪ Step 2: Ridge regression inside region of interest 𝑄

∆𝜶∗= arg min
∆𝜶

( ∆𝑨 − 𝐶∆𝜶 𝑙2
2
+ 𝜎 ∆𝜶 𝑙2

2
)

s. t. ∆𝛼 𝑥, 𝑦 = 0, ∀(𝑥, 𝑦) ∉ 𝑄

▪ Step 3: Estimated location: centroid of ∆𝜶∗

Localization algorithm

Ground truth of ∆𝜶Step 0: Map of ∆𝜶(0). Red: 

positive, green: negative

Step 1

Steps 2 and 3
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𝑠(1)
⋮

𝑠(𝑖)
⋮

𝑠(𝑁𝑠)

=

𝐴(1,1) ⋯ ⋯
⋮ 𝐴(𝑖, 𝑗) ⋮
⋯ ⋯ 𝐴(𝑁𝑠, 𝑁𝑓)

𝑓(1)
⋮

𝑓( 𝑗 )
⋮

𝑓(𝑁𝑓)

+

𝑏(1)

⋮

𝑏(𝑁𝑠)

𝒔 = 𝐴 (𝒏𝒐 𝒐𝒃𝒋𝒆𝒄𝒕) 𝒇 + 𝒃
𝒔 + ∆𝒔 = 𝐴 (𝒘𝒊𝒕𝒉 𝒐𝒃𝒋𝒆𝒄𝒕) 𝒇 + 𝒃

∆𝒔 = (𝐴 𝒘𝒊𝒕𝒉 𝒐𝒃𝒋𝒆𝒄𝒕 − 𝐴 𝒏𝒐 𝒐𝒃𝒋𝒆𝒄𝒕 ) 𝒇

Passive localization (model based)

Source 𝑗Sensor 𝑖

Ambient light
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Depends on location 

Taking ratios 
∆𝒔𝑖

∆𝒔𝑗
= 𝑓 𝑥0, 𝑦0 for 𝑁𝑠-1 sensor pairs we get rid of 𝒇 and 

use constrained least squares to solve for 𝑥0, 𝑦0.



▪ Validation:

▪ Room: 1.2m (W) × 2.2m (L) × 0.7m (H)

▪ Flat objects: from 3cm x 4cm to 26cm x 51cm

▪ 3x3 layout of light sources/sensors:

Experiments

MATLAB simulation Unity3D simulation Small-scale real testbed
Idealized Realistic

LED

Single-pixel 

sensor 
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▪ Localization error vs. object size (little ambient light)

▪ Active illumination works well in real testbed

Results: Small-scale testbed

Error sources:

• LED light noise

• Sensor noise

• Interfering objects

• Non-Lambertian floor

• Indirect light
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[Zhao et al., CVPR-COPS, 2018]



▪ Localization error vs. illumination change between empty and occupied 

states (fluorescent light on or off)

▪ Active illumination is still robust

Results: Small-scale testbed

No illumination change Illumination change
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Full-scale testbed
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Private enough ?

Privacy-preserving localization (Konrad)
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No line

of sight

Can deep learning 

disclose visual identity ? 



Final thoughts

Privacy-preserving localization (Konrad)
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▪ Sensors will be around us whether we like it or not

▪ Privacy concerns will only grow

▪ Solution: Use ultra-low resolution sensors to localize and 

recognize visual events. Further improve by ``shallow learning’’?

▪ Bonus: Sensors can be simple and low-bandwidth

▪ Challenge: How to convince the public that

such sensors collect no privacy-violating data ?


