Privacy-Preserving Localization and Recognition of Human Activities

Janusz Konrad

BOSTON UNIVERSITY

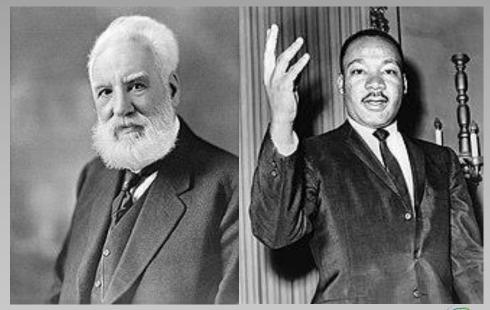
Outline

- Boston University and ECE
- Motivation
- Passive localization
- Passive activity recognition
- Localization via modulated light
- Final thoughts

Boston University

- Private, non-profit university:
 - Urban setting in major academic/metro area
 - 17,000 undergraduate students
 - 15,000 graduate students
 - 4,000 faculty
 - 18 schools and colleges
 - Major research university
- Department of Electrical and Computer Engineering:
 - 54 faculty
 - 465 undergraduate students
 - 221 Master's students
 - 144 PhD students

View of downtown across the Charles River



6

SPS Distinguished Lecture Mumbai, Jan. 13, 2020

Main ECE research areas

BIO-ECE AND DIGITAL HEALTH

DATA SCIENCE AND INTELLIGENT SYSTEMS

IMAGING AND OPTICAL SCIENCE ◄

MOBILE/CLOUD COMPUTING AND CYBERSECURITY

BU

PHOTONICS, ELECTRONICS AND NANOTECHNOLOGY

Information and Data Sciences Group (<u>ids.bu.edu</u>):

- 20 faculty
- 50 PhD students

SPS Distinguished Lecture Mumbai, Jan. 13, 2020

Acknowledgments

Prof. Prakash Ishwar

Dr. Jiawei Chen (Oppo)

Jinyuan Zhao (Google)

Dr. Behrouz Saghafi (U. North Carolina)

Ji Dai (MS)

Doug Roeper (undergrad)

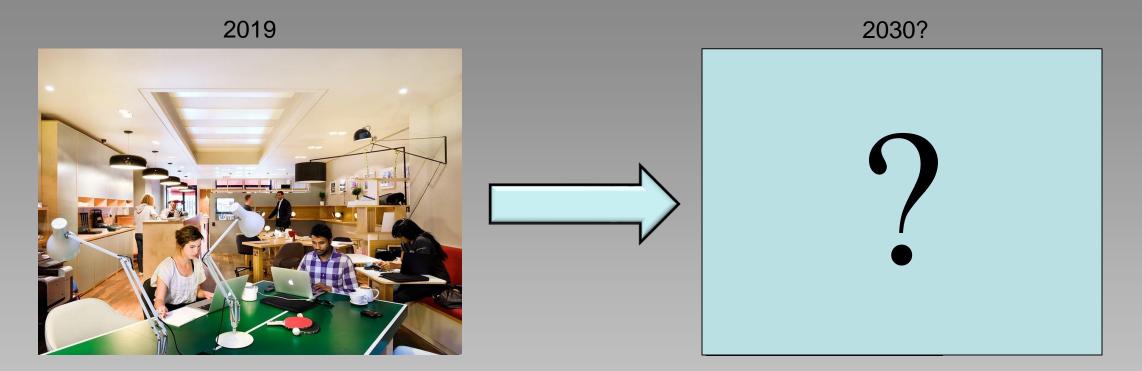
Natalia Frumkin (undergrad)

Research support: National Science Foundation and Boston University. Lecture support: IEEE Signal Processing Society Distinguished Lecturer Program.

Paradigm shift

2019

Paradigm shift



Energy only ? Can we better exploit this opportunity?

Lighting-Enabled Systems & Applications

- NSF Engineering Research Center
- \$37M from over 10 years
- 3 universities
- 24 industrial members

SPS Distinguished Lecture Mumbai, Jan. 13, 2020

Leveraging LEDs for ...

Energy Savings

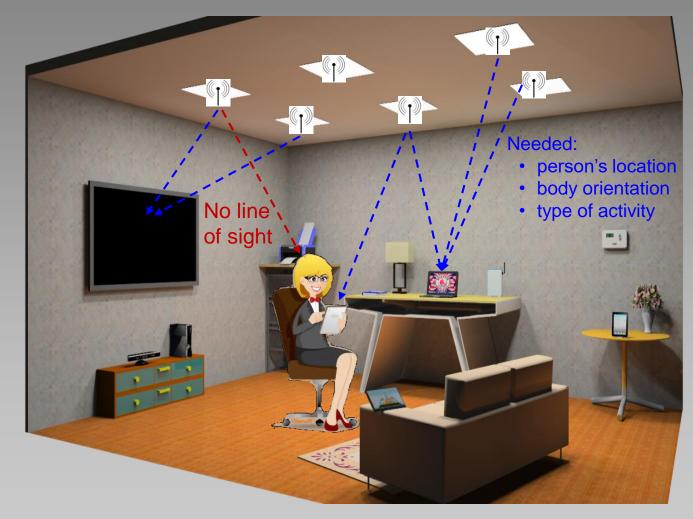
Health Benefits

Productivity Gains

Bit-rate up to 1Gb/s for a focused, directional beam

Much lower rates for diffused light

Context: Visible Light Communication



Other applications:

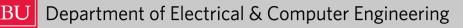
- Lighting control
- HVAC control
- Robotics (people avoidance)

Clear goal, but one caveat ...

- Activity localization and recognition studied extensively over decades
- Excellent performance, even under challenging conditions, but ...

requires cameras

no privacy



Approach I: Reversible methods

Data scrambling:

- Typical approach: data permutation
- Domain: image, transform, bitstream
- Vulnerable to attacks [Macq and Quicquater, Proc. IEEE, 1995]

Data encryption:

- Naïve methods: video bitstream = text data
- Cryptographic algorithms: DES, AES, RSA
- Extracting original information from encrypted data is challenging
- Attacks are difficult but recently deep learning was successful in recognizing encrypted images [Wang et al., MSSP 2017, Bachrach et al., ICML 2016]



Approach II: Irreversible methods

Data degradation:

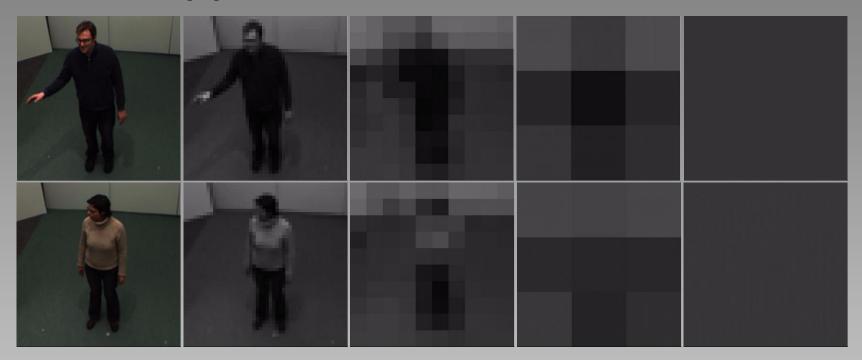
Before acquisition (optically):

[*Pittaluga et al., CVPR, 2015*] Coarse control due to optics

After acquisition (digitally):

[*Winkler et al., AVSS, 2014*] Potential for eavesdropping

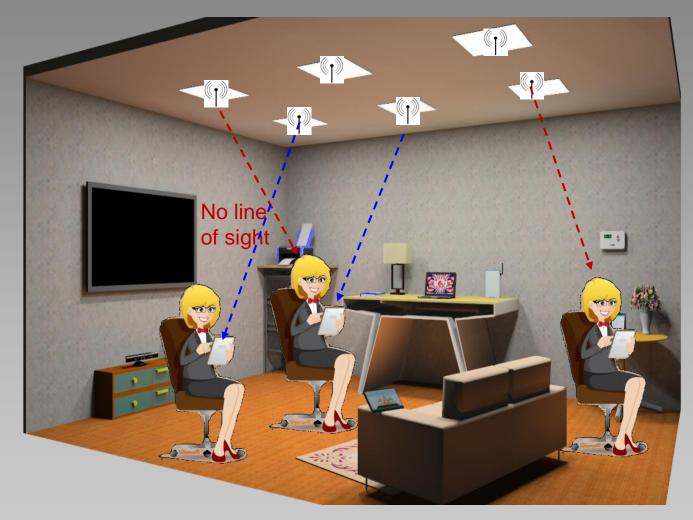
Alternative approach: ultra-low res



Challenge: Localize and recognize activities at extremely-low resolution (eLR)

- Benefits: eavesdropping will not threaten privacy
 - low data transmission and computing costs

Task I: Person localization



Not difficult with video camera(s)

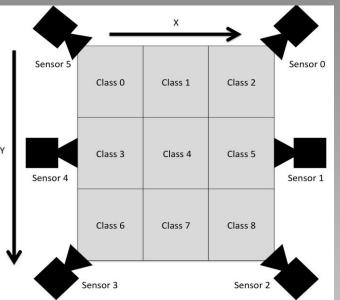
How about ``singlepixel" cameras ?

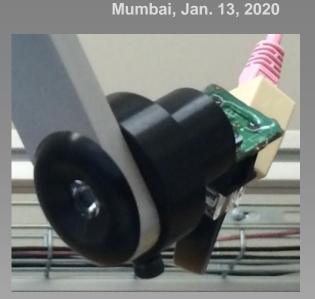
1 sensor reading per frame

Testbed

 6 single-pixel visible-light sensors (Taos-AMS TCS 34725)

Area: 2.37m x 2.72m





SPS Distinguished Lecture

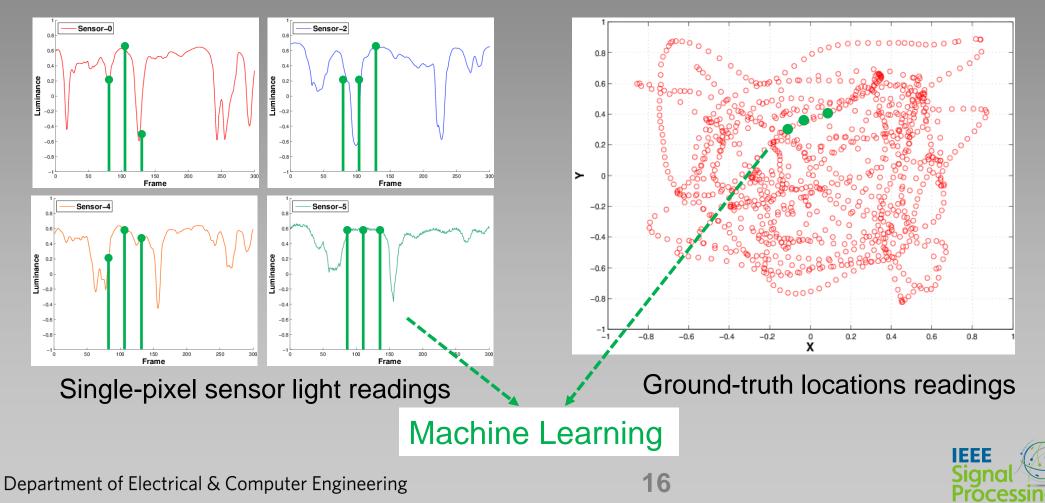
Department of Electrical & Computer Engineering

Data-driven approach \rightarrow Ground truth needed:

Hollywood-style motion capture (IR light + markers)

Data-driven localization: First train

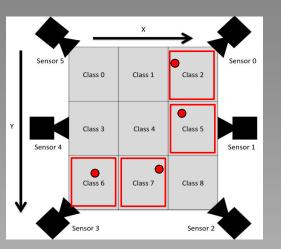
Simultaneous recording:

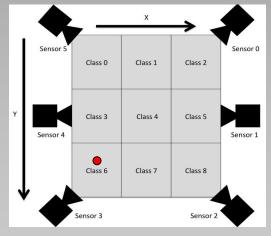


Then, test

- Coarse-grained localization (classification):
 - Area divided into cells (3 x 3 grid)
 - Each cell is a class
 - SVM classifier (RBF kernel)

- Fine-grained localization (estimation):
 - Real-valued location coordinates estimated
 - Separate estimation for X and Y coordinates
 - SVM regressor (RBF kernel)





Usage scenarios and validation

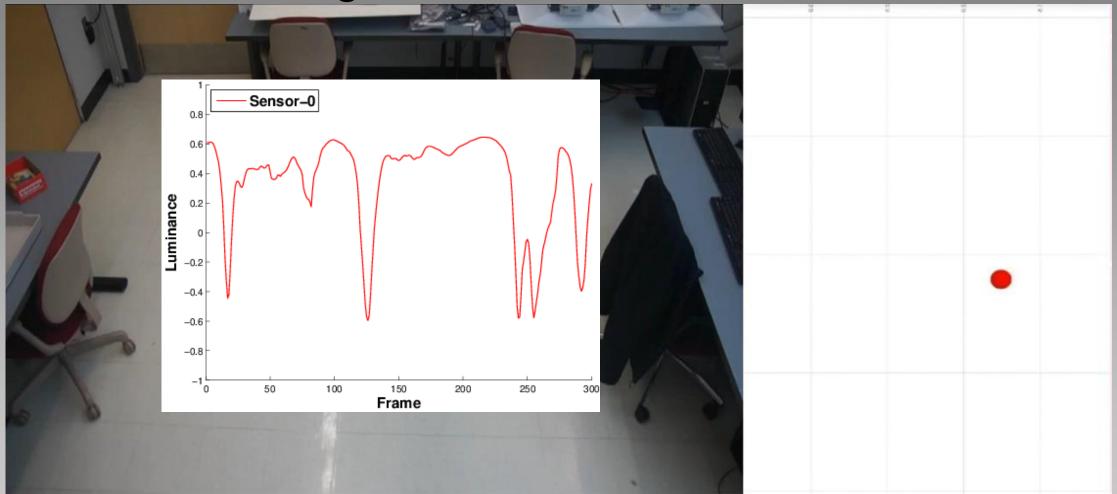
- Dataset
 - Several random 90-second walks by 4 different people
 - Ground-truth locations: OptiTrack system
- Public setting (e.g., conference room)
 - New users appear often
 - System cannot be trained on all users
 - Leave-one-person-out cross-validation
- Private setting (e.g., home)
 - Same set of users
 - System can be trained on all users
 - Leave-one-walk-out cross-validation

[Roeper et al., IEEE-AVSS, 2016]

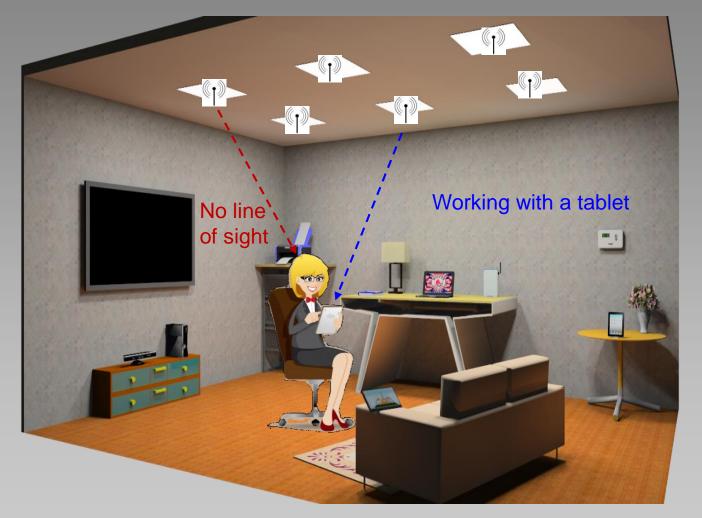
Private setting		
72%	31cm (±22cm)	

Results: tracking

Red – estimate from 6 single-pixel sensors



Task II: Activity Recognition



State-of-the-art

- **30-pixe**l humans: optical flow, NN classifier, optical-flow correlation as distance metric [*Effros et al., 2003*]
 Optical flow unreliable at lower resolutions
- 32 x 48 images: Hu moments from directional history images, kNN classifier [Ahad et al. 2010]
 Poor performance at lower resolutions
- 20 ceiling-mounted binary IR sensors: short-duration averages of binary values, SVM classifier [*Tao et al. 2012*]
 Unrealistic scenario leveraging strong correlation between action and location

Can we go even lower in resolution but maintain recognition performance?

SPS Distinguished Lecture Mumbai, Jan. 13, 2020

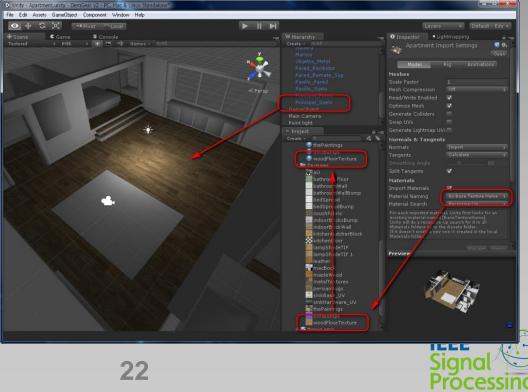
Society

Phase I: Simulation

Virtual testbed:

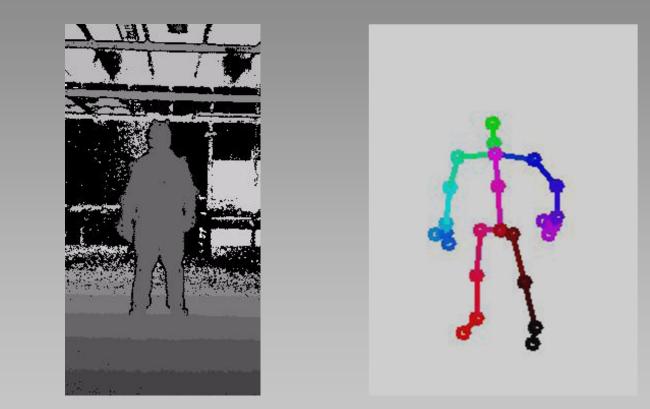
Kinect v2: motion capture

- Unity3D[©]:
 - 3-D scene,
 - avatars,
 - animation by human motion



Simulate a virtual 3-D scene and sensors

Record humans with Kinect and extract skeletons



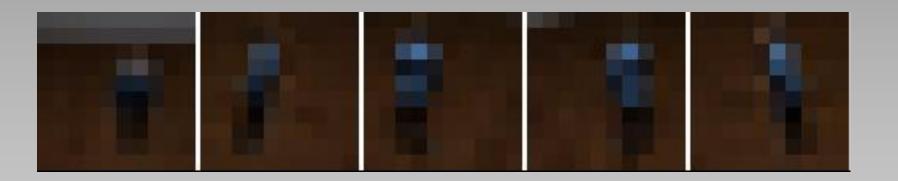
Animate avatars using recorded skeletons

BU Department of Electrical & Computer Engineering

Capture data from the virtual scene:

- at various resolutions,
- at various locations from various angles (field of view),
- of different type (luminance, color, depth),

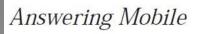
• . . .



SPS Distinguished Lecture Mumbai, Jan. 13, 2020

Collected actions

- 12 subjects:
 - 7 male,
 - 5 female
- 9 actions typical of a seminar-room scenario
- Single avatar in FOV



Checking Mobile

Raising Hand

Writing on Board

Clapping

Raising Volume

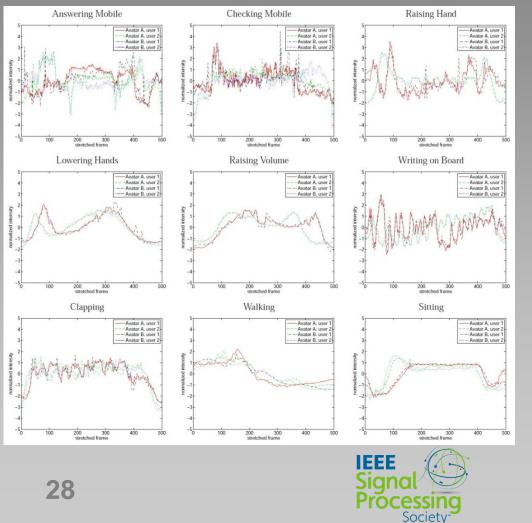
BU

Features

- Elaborate features cannot be extracted (too few pixels)
- Feature = grayscale value at each pixel:

 $I_{i,j,k}[t]$

- (i, j) spatial location
 - k camera number
 - t time instant
- Mean-variance equalization to focus on dynamics and reduce impact of clothing



Classification

• **Given:** query sample \hat{I} and dictionary samples:

$$\{\hat{V}^{m,l}\} \quad l = 1, \dots, L, \qquad m = 1, \dots, M_l \qquad \text{# of samples}$$

$$\# \text{ of samples}$$

$$\# \text{ of classes}$$

Find nearest neighbor:

$$(\widehat{m}, \widehat{l}) = \arg\min_{m,l} d(\widehat{l}, \widehat{V}^{m,l})$$

Winning class

under l_1 distance metric:

$$d(\hat{I}, \hat{V}) = \sum_{k} \sum_{t} \sum_{i} \sum_{j} |\hat{I}_{i,j,k}[t] - \hat{V}_{i,j,k}[t]|$$

Results

Description	Configuration	CCR
Best	10 x 10, 30 Hz, 5 cams	89.60%
Low frame rate	10 x 10, 2 Hz, 5 cams	86.49%
Single camera	10 x 10, 30 Hz, 1 cam	77.96%
Low spatial resolution	1 x 1, 30 Hz, 5 cams	75.50%
Everything low	1 x 1, 2 Hz, 1 cam	48.39%

[Dai et al., IEEE-ICIP, 2015]

- CCRs around 90% possible at privacy-preserving resolutions
- No need for high frame rate (for these actions)
- More sensors needed at extremely low spatial resolutions

Phase II: Real-camera data

- So far, proof of concept validated on synthetic data:
 - no noise,
 - no illumination variations,
 - known subject location.
- Test on a real-camera dataset?
- IXMAS-ROI actions dataset (64 x 48 pixels, 25 Hz):
 - 12 actions, 10 subjects, 5 cameras.

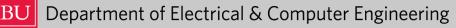
IXMAS-ROI results

Various decimation factors

Configuration	CCR
16 x 12, 25 Hz, 5 cams	80.00%
8 x 6, 25 Hz, 5 cams	77.78%
4 x 3, 25 Hz, 5 cams	76.94%
16 x 12, 2 Hz, 5 cams	74.35%
16 x 12, 25 Hz, 1 cam	67.11%
1 x 1, 25 Hz, 5 cams	63.33%
1 x 1, 2 Hz, 1 cam	29.21%
	16 x 12, 25 Hz, 5 cams 8 x 6, 25 Hz, 5 cams 4 x 3, 25 Hz, 5 cams 16 x 12, 2 Hz, 5 cams 16 x 12, 25 Hz, 1 cam 1 x 1, 25 Hz, 5 cams

[Dai et al., CVPR-AMFG, 2015]

 7-10% CCR drop compared to avatar data, but ... the same trends are observed



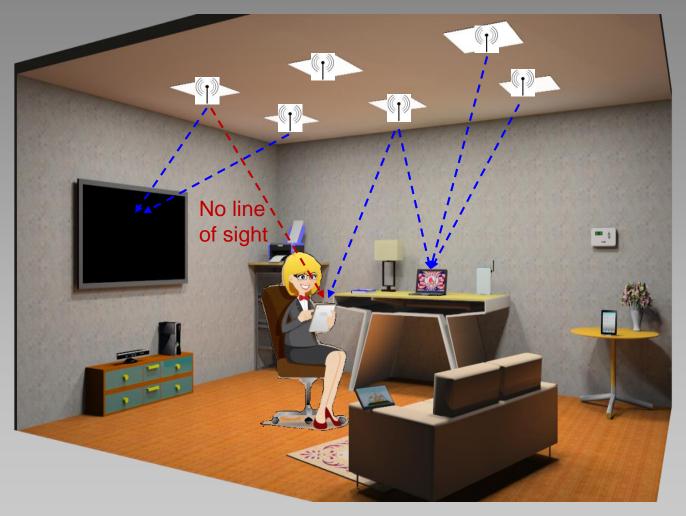
Phase III: Physical testbed

- 12 single-pixel sensors, 10 fps
- POE data transmission and power
- Real-time algorithm in Matlab on a laptop



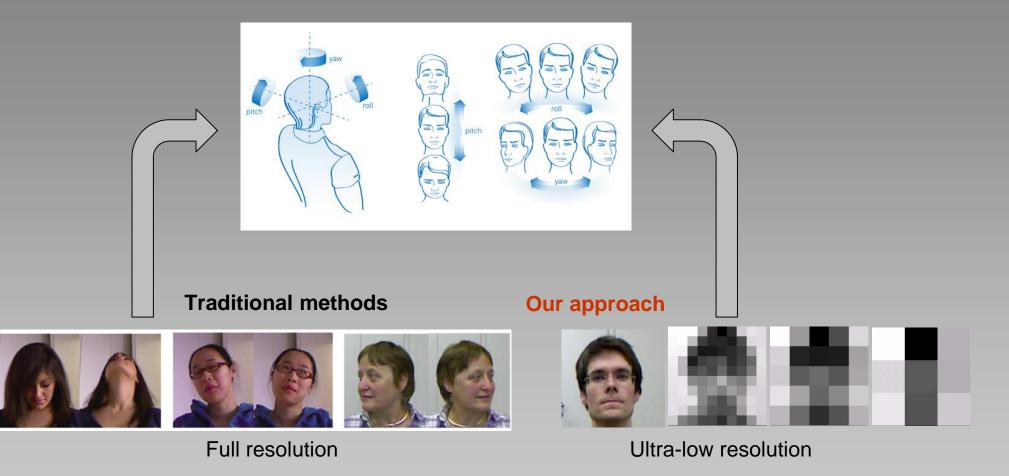
SPS Distinguished Lecture Mumbai, Jan. 13, 2020

Task III: Body orientation estimation



Where is this tablet?

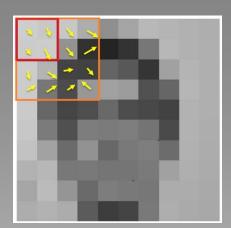
Study case: Head pose estimation



Features

- Histogram of Gradients (HOG):
 - f =concatenated histograms

Resolution	Cell Size	Block Size	Length of f
10 × 10	2×2 (pixel)	2×2 (cell)	576
5 × 5	1 × 1 (pixel)	2×2 (cell)	576
3 × 3	1 × 1 (pixel)	2×2 (cell)	144



• New gradient-based pixel-wise feature: $f = [g_{1,1}, g_{2,1}, g_{3,1}, ...]$

$$\boldsymbol{g}_{i,j} = \left(\frac{\partial \hat{I}_{i,j}}{\partial x}, \frac{\partial \hat{I}_{i,j}}{\partial y}, \|\nabla \hat{I}_{i,j}\|, \arg(\nabla \hat{I}_{i,j})\right)$$

Resolution	Length of f
10 × 10	400
5 × 5	100
3 × 3	36

Estimation via non-linear regression

• Support Vector Regression: given a training set $\{(f_j, \theta_j), j = 1, ..., N\}$, learn functional mapping:

$$\widehat{\theta}(\boldsymbol{f}) = \sum_{j=1}^{N} w_j K(\boldsymbol{f}_j, \boldsymbol{f}) + b$$

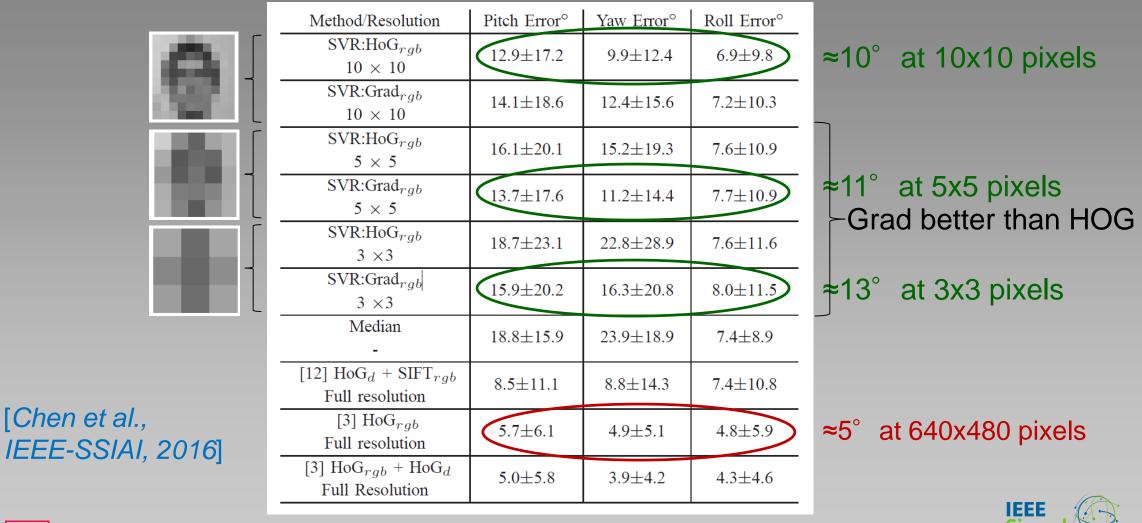
by minimizing a regularized ϵ -insensitive loss function:

$$\min_{b,w} \frac{1}{2} \|w\|^2 + C \sum_{j=1}^N \max(0, |\theta_j - \hat{\theta}(\boldsymbol{f}_j)| - \epsilon)$$

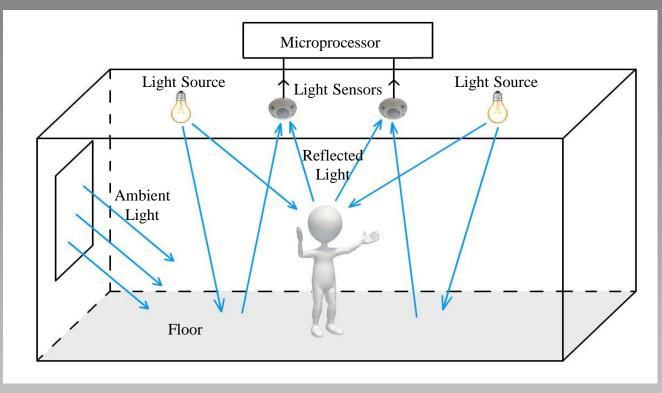
• One regressor for each pose angle: pitch, yaw, roll

Society

Results: Mean-Absolute Error on 15k images



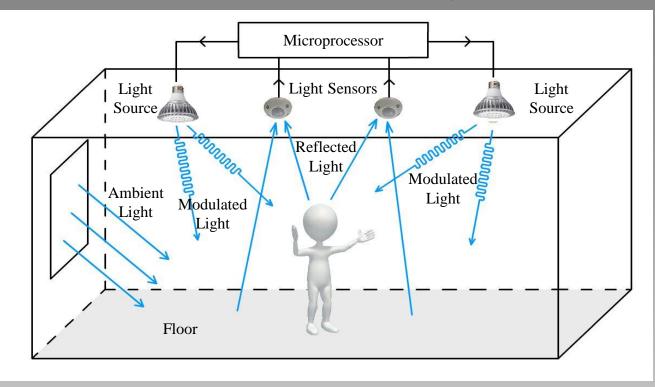
Localization thus far: Passive light sensing



- Light sources not controllable (incandescent, fluorescent)
- Algorithms rely on reflected light measurements: high sensitivity to changes in illumination

Department of Electrical & Computer Engineering

Alternative localization: Active light sensing

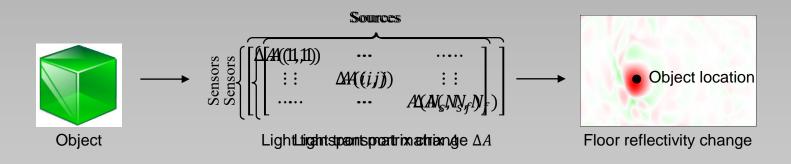


- Precisely-modulated LED light sources (frequency > 60 Hz)
- Algorithms use both reflected light and modulation pattern
- Robust to illumination changes

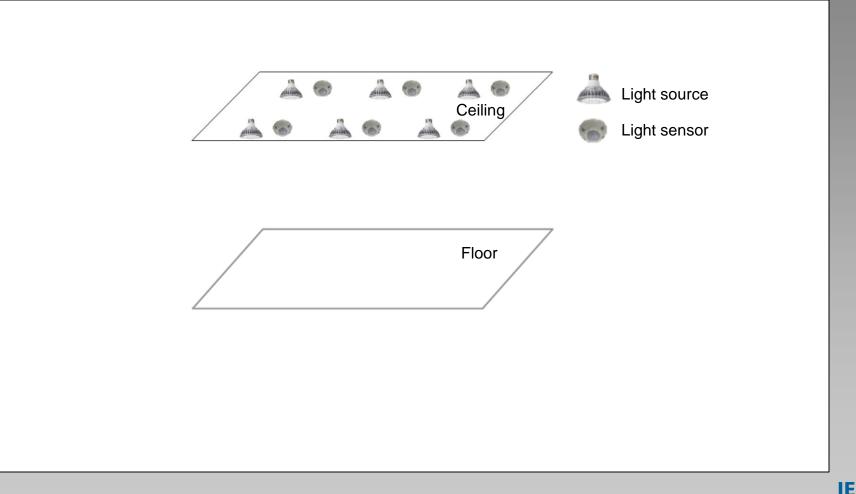
J Department of Electrical & Computer Engineering

Algorithm overview

- Relationship between light modulation and sensor response is captured by light transport matrix A
- Object presence changes light transport matrix A
- Algorithm estimates floor reflectivity change from the change in light transport matrix
- Region of largest reflectivity change identifies object location

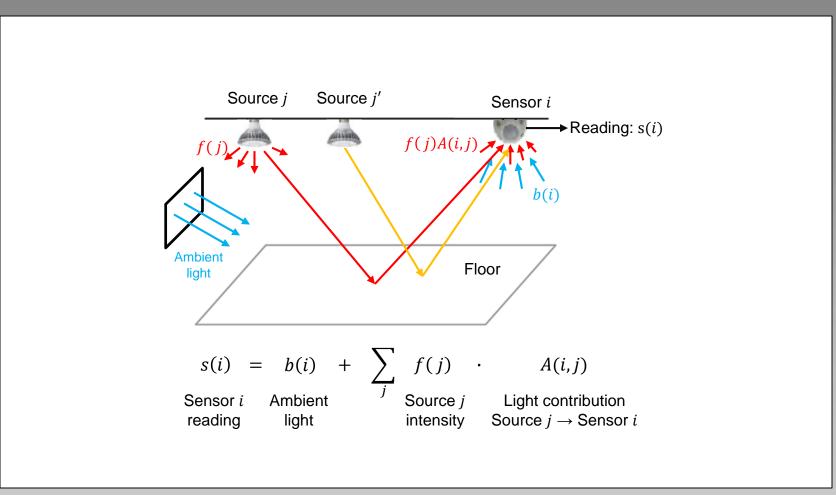


Light transport matrix A





Light transport matrix A



Estimating matrix A via light modulation

Sensor
$$i \leftarrow \begin{bmatrix} s(1) \\ \vdots \\ s(i) \\ \vdots \\ s(N_S) \end{bmatrix} = \begin{bmatrix} A(1,1) & \cdots & \cdots \\ A(i,j) & \vdots \\ \cdots & \cdots & A(N_S,N_f) \end{bmatrix} \begin{bmatrix} f(1) \\ \vdots \\ f(j) \\ \vdots \\ f(N_f) \end{bmatrix} \rightarrow \text{Source } j + \begin{bmatrix} b(1) \\ \vdots \\ b(N_S) \end{bmatrix}$$

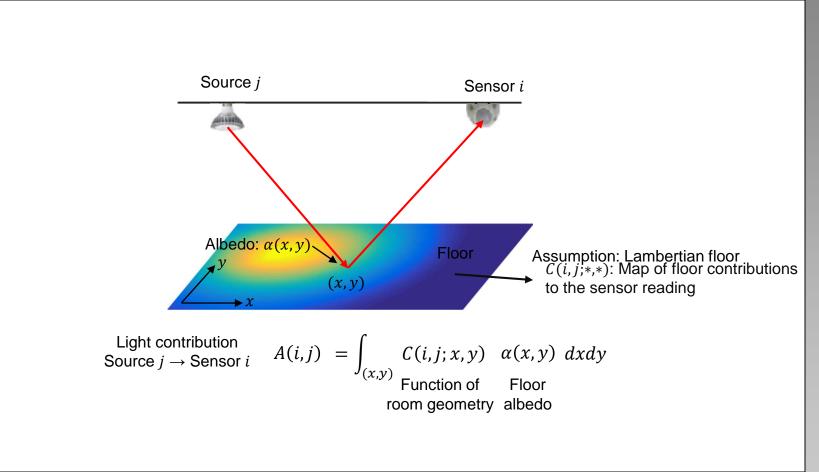
Ambient light
$$s = A \qquad f + b$$

$$s + \Delta s = A \qquad (f + \Delta f) + b$$
Perturbation
$$\Delta s = A \qquad \Delta f$$

$$\begin{bmatrix} \Delta s(t_1) & \cdots & \Delta s(t_n) \end{bmatrix} = A[\Delta f(t_1) & \cdots & \Delta f(t_n)]$$

$$\Delta S \qquad (\Delta s = \Delta S \Delta F^{T}(\Delta F \Delta F^{T})^{-1}$$

Light transport matrix A in detail



Society

Change in $A \leftrightarrow$ Change in Floor Albedo

Initial state (empty): $A_0(i,j) = \int_{(x,y)} C(i,j;x,y) \alpha_0(x,y) dxdy$

New state (occupied): $A(i,j) = \int_{(x,y)} C(i,j;x,y) \alpha(x,y) dxdy$

Change:

$$\underbrace{A(i,j) - A_0(i,j)}_{\Delta A(i,j)} = \int_{(x,y)} C(i,j;x,y) \left(\underbrace{\alpha(x,y) - \alpha_0(x,y)}_{\Delta \alpha(x,y)}\right) dxdy$$

Matrix-vector form:floor positions (x, y)source-
sensor
pairs
(i,j) $\left[\Delta A \right]$ $= \begin{array}{c} \begin{array}{c} \text{source-}\\ \text{sensor}\\ \text{pairs}\\ (i,j) \end{array}$ $\left[\Delta \alpha \right]$ $\left[\begin{array}{c} \Delta \alpha \\ positions \\ (x, y) \end{array} \right]$ floor
positions
(x, y)vectormatrixvector

• Known: ΔA , *C*; solve for floor albedo change $\Delta \alpha \rightarrow$ location of change

Department of Electrical & Computer Engineering

Localization algorithm

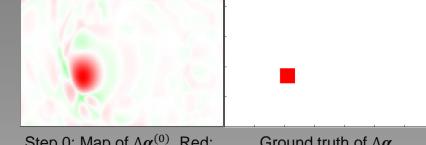
Step 0: Ridge regression over the whole floor [Zhao et al., IEEE-ICASSP, 2017]

$$\Delta \boldsymbol{\alpha}_0^* = \underset{\Delta \boldsymbol{\alpha}}{\operatorname{arg\,min}} (\|\Delta \boldsymbol{A} - \boldsymbol{C} \Delta \boldsymbol{\alpha}\|_{l_2}^2 + \sigma \|\Delta \boldsymbol{\alpha}\|_{l_2}^2)$$

- **Step 1:** Threshold \rightarrow coarse localization $Q = \{(x, y) : |\Delta \alpha_0^*(x, y)| \ge \tau\}$
- **Step 2:** Ridge regression inside region of interest Q

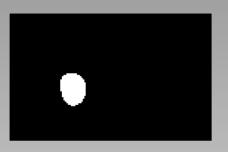
 $\Delta \boldsymbol{\alpha}^* = \arg \min \left(\left\| \Delta \boldsymbol{A} - C \Delta \boldsymbol{\alpha} \right\|_{l_2}^2 + \sigma \left\| \Delta \boldsymbol{\alpha} \right\|_{l_2}^2 \right)$ $\Delta \alpha$ s.t. $\Delta \alpha(x, y) = 0, \forall (x, y) \notin Q$

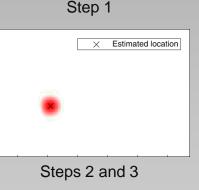
Step 3: Estimated location: centroid of $|\Delta \alpha^*|$



Step 0: Map of $\Delta \alpha^{(0)}$. Red: positive, green: negative

Ground truth of $\Delta \alpha$





Passive localization (model based)

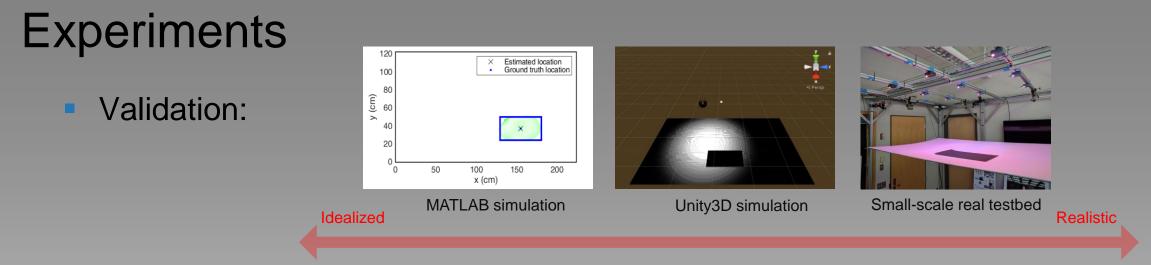
Sensor
$$i \leftarrow \begin{bmatrix} s(1) \\ \vdots \\ s(i) \\ \vdots \\ s(N_s) \end{bmatrix} = \begin{bmatrix} A(1,1) & \cdots & \cdots \\ \vdots & A(i,j) & \vdots \\ \cdots & \cdots & A(N_s,N_f) \end{bmatrix} \begin{bmatrix} f(1) \\ \vdots \\ f(j) \\ \vdots \\ f(N_f) \end{bmatrix} \longrightarrow \text{Source } j + \begin{bmatrix} b(1) \\ \vdots \\ b(N_s) \end{bmatrix}_{\text{Ambient light}}$$

$$s = A(\text{no object}) \qquad f + b$$

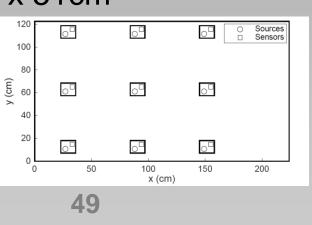
$$s + \Delta s = A(\text{with object}) \qquad f + b$$

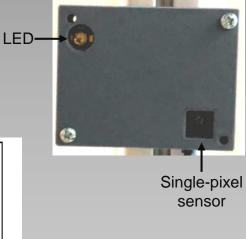
 $\Delta s = (A(with object) - A(no object)) f$ Depends on location

Taking ratios $\frac{\Delta s_i}{\Delta s_j} = f(x_0, y_0)$ for N_s -1 sensor pairs we get rid of f and use constrained least squares to solve for x_0, y_0 .



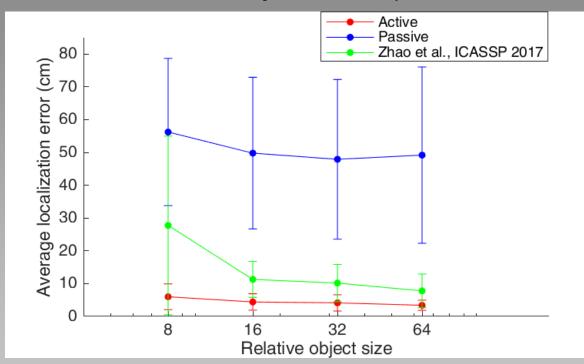
- Room: 1.2m (W) \times 2.2m (L) \times 0.7m (H)
- Flat objects: from 3cm x 4cm to 26cm x 51cm
- 3x3 layout of light sources/sensors:





Results: Small-scale testbed

Localization error vs. object size (little ambient light)



Error sources:

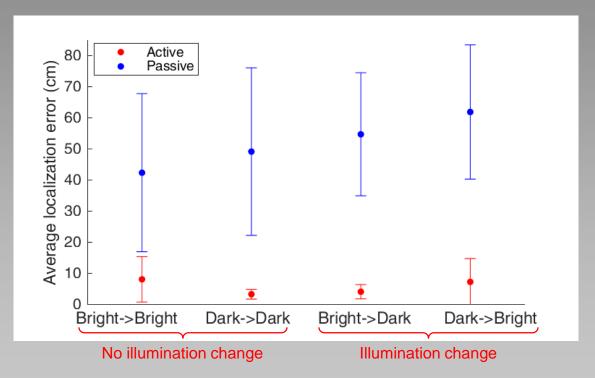
- LED light noise
- Sensor noise
- Interfering objects
- Non-Lambertian floor
- Indirect light

[Zhao et al., CVPR-COPS, 2018]

Active illumination works well in real testbed

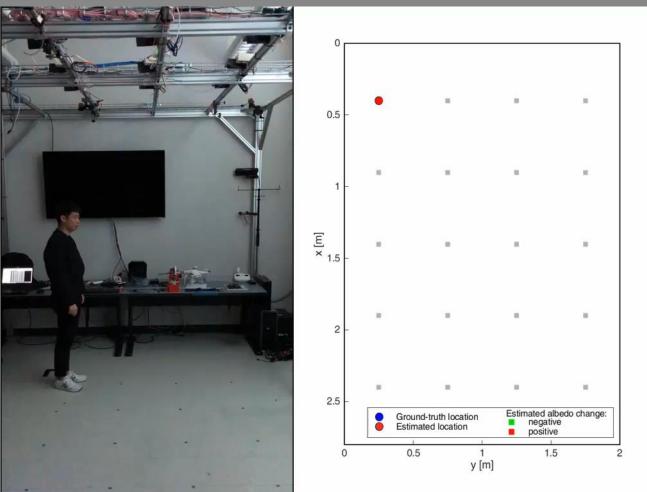
Results: Small-scale testbed

 Localization error vs. illumination change between empty and occupied states (fluorescent light on or off)



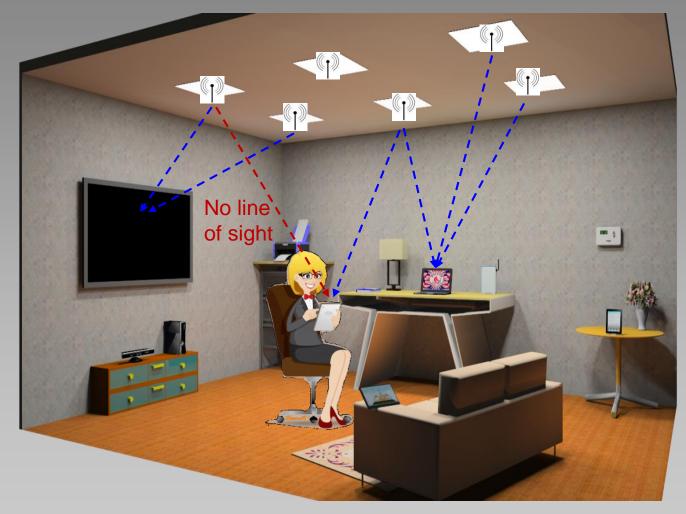
Active illumination is still robust

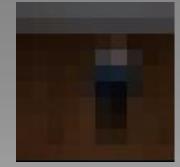
Full-scale testbed

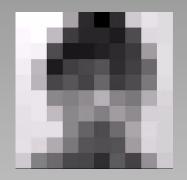


Video speed: ×8. Data collected over 3 light cycles for accuracy. A fully-developed system will produce no visible flicker.

Private enough ?

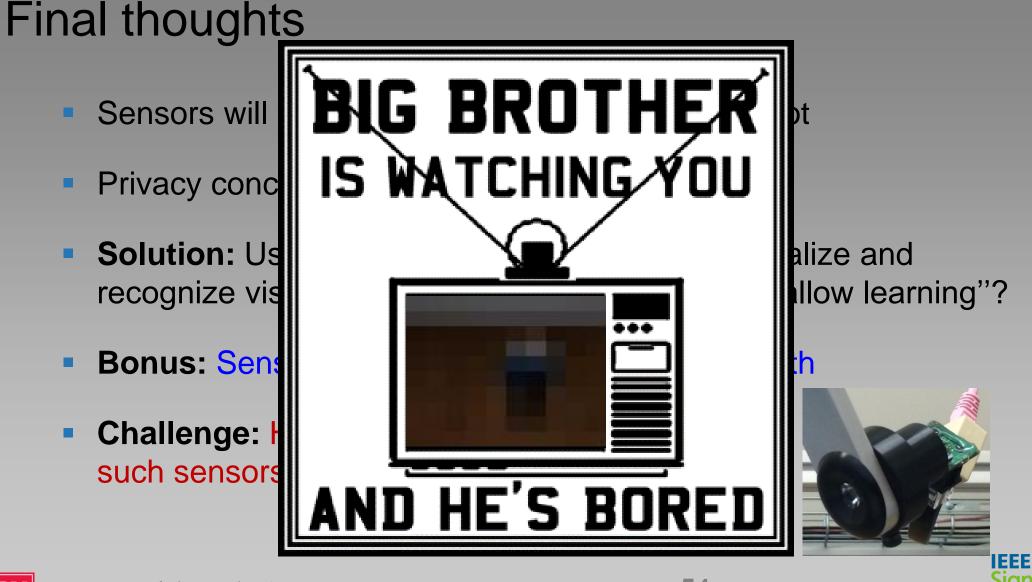






Can deep learning disclose visual identity ?

Society



54