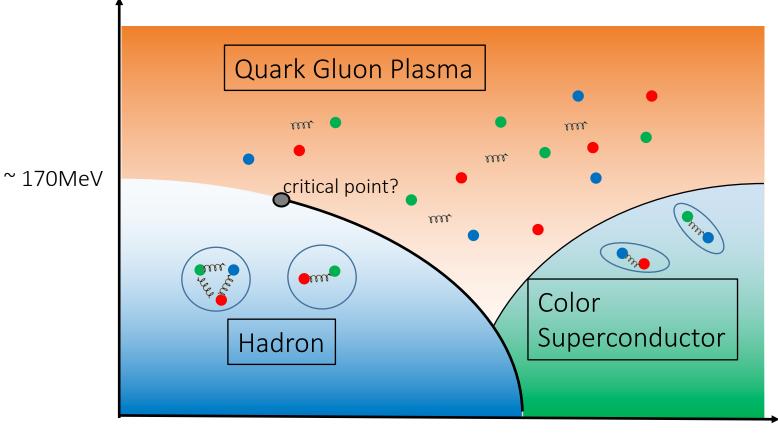
Quantum Dissipation of Quarkonium in Quark Gluon Plasma

Free meson seminar @online

Takahiro Miura (Osaka University)
with Yukinao Akamatsu, Masayuki Asakawa, Alexander Rothkopf

Based on PRD.101.034011(2019)

QCD Phase Diagram

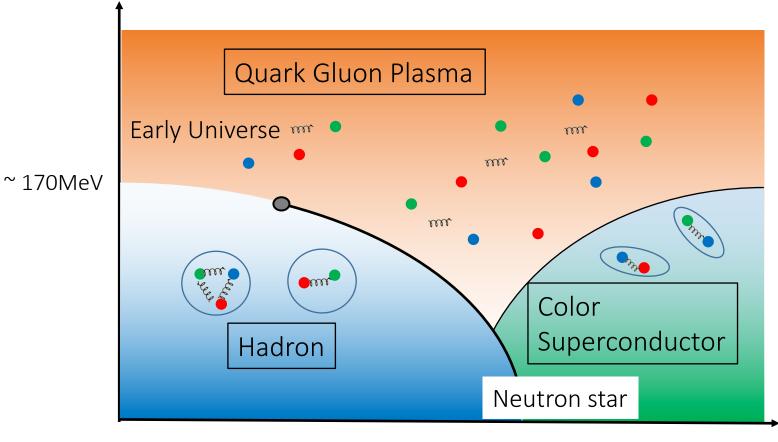


vacuum

Baryon chemical potential

QCD Phase Diagram

Temperature

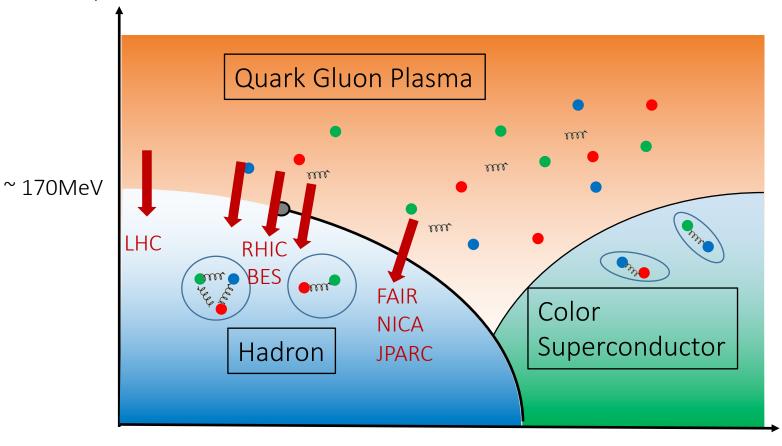


vacuum

Baryon chemical potential

QCD Phase Diagram

Temperature



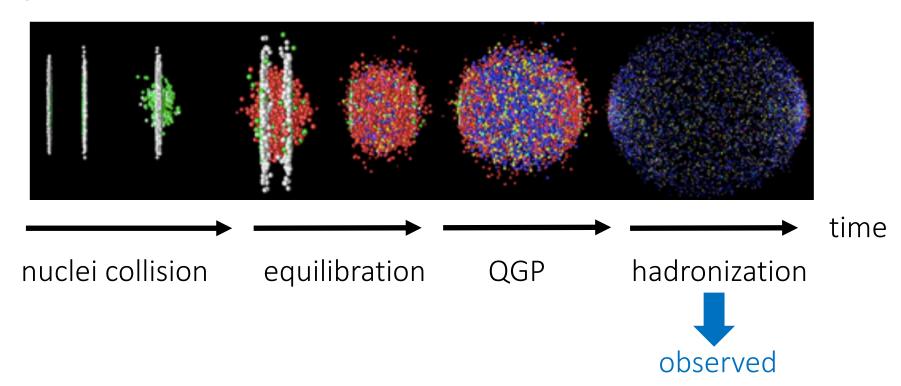
vacuum

Baryon chemical potential

Heavy Ion Collisions

Dynamics in HICs (LHC,RHIC)

figure taken from http://alice-j.org/



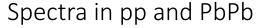
Observables reflect the properties of QGP

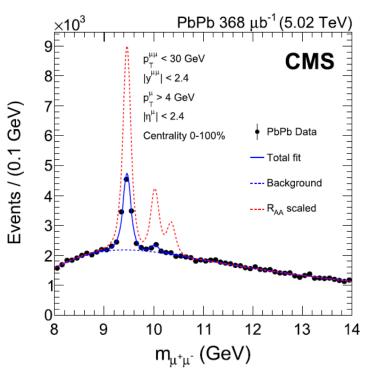
- *JET QUENCHING → stopping power
- *ELIPTIC FLOW \rightarrow shear viscosity
- *QUARKONIUM SUPPRESSION → screening length (focused in this talk)

Quarkonium in Heavy Ion Collisions

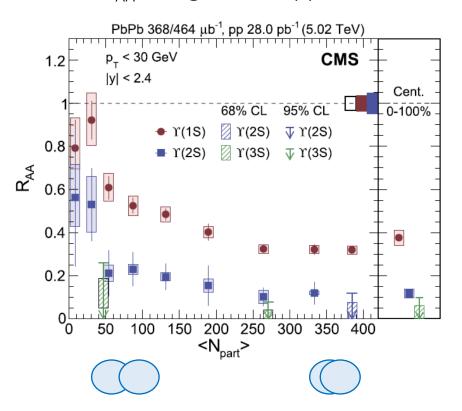
Quarkonium yield suppression

[CMS collaboration]





$R_{AA} \sim degree of suppression$



What determines these experimental data?

Quarkonium in Heavy Ion Collisions

Dynamics in HICs



How does quarkonium evolve in QGP?

Quarkonium: Theory 1

Matsui & Satz Scenario

[Matsui, Satz(86)]

 J/ψ as a probe of color charge screening

confined phase $T < T_c$

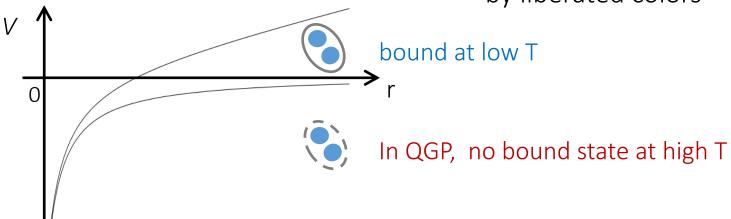
$$V = -\frac{\alpha}{r} + \sigma r$$

Confinement potential

QGP phase $T > T_c$

$$V = -\frac{\alpha}{r} e^{-m_D r}$$

Debye screening potential by liberated colors



Quarkonium dissociation based on potential change

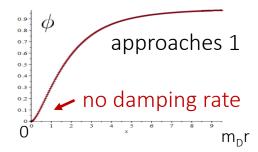
Quarkonium: Theory 2

Real-time potential
$$V(r) \equiv \frac{i\partial_t W_{\text{loop}}}{W_{\text{loop}}}\Big|_{t\to\infty}$$

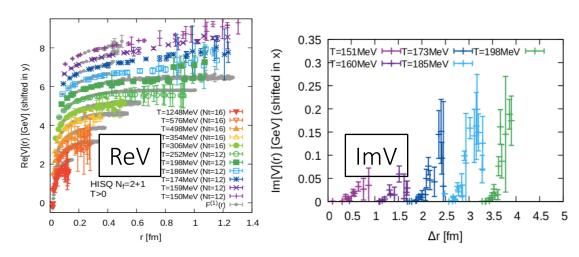
From perturbation theory

[Laine+(08),Beraudo+(08),etc.]

$$V(r) = -\alpha C_F \Big[m_D + \frac{\mathrm{e}^{-m_D r}}{r} \Big] - i\alpha C_F T \phi(r) \in \mathbb{C}$$
 imaginary part



From lattice QCD results [Rothkopf+(12-), Petreczky+(18),etc.]



Schrödinger equation with complex potential

Quarkonium: Theory 3

Langevin dynamics

[Blaizot+(16,18)]

Interference between HQ and anti HQ is included

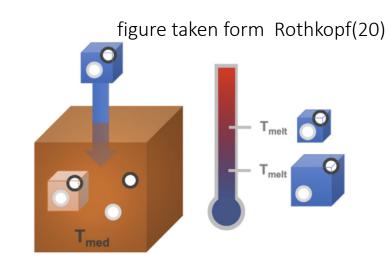
$$\begin{cases} &\text{HQ} \qquad M\ddot{r} + \frac{\beta g^2}{2}(\mathcal{H}(0)\dot{r} - \mathcal{H}(s)\dot{\bar{r}}) - g^2\nabla V(s) = \xi(s,t) \\ &\text{anti HQ} \qquad M\ddot{\bar{r}} + \frac{\beta g^2}{2}(\mathcal{H}(0)\dot{\bar{r}} - \mathcal{H}(s)\dot{r}) + g^2\nabla V(s) = \bar{\xi}(s,t) \\ & \langle \xi(s,t)\xi\left(s,t'\right)\rangle = g^2\mathcal{H}(0)\delta\left(t-t'\right) \\ & \langle \xi(s,t)\bar{\xi}\left(s,t'\right)\rangle = -g^2\mathcal{H}(s)\delta\left(t-t'\right) \\ & s = r - \bar{r} \\ & \text{relative distance} \end{cases}$$

Quarkonium as two interacting random walking particles

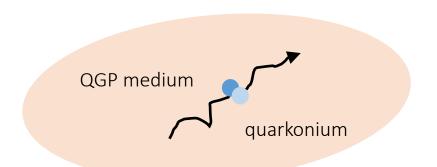
Quarkonium as Open System

Problems in descriptions

- Debye screening phenomenon static picture of quarkonium
- Complex potential not unitary evolution
- Langevin equation in classical limit



$$i\partial_t \psi = \left[-\frac{\nabla^2}{M} + \text{Re}V + i\,\text{Im}V \right] \psi$$



Open Quantum Systems

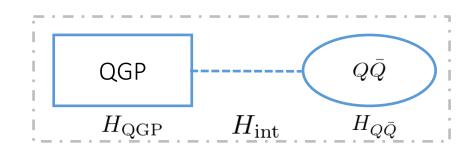
We describe quarkonium in QGP just by quarkonium variables

von Neumann equation

$$\frac{d}{dt}\rho_{\text{total}} = -i[H_{\text{total}}, \rho_{\text{total}}]$$

$$H_{\mathrm{total}} = H_{\mathrm{QGP}} + H_{\mathrm{Q\bar{Q}}} + H_{\mathrm{int}}$$

 $H_{\mathrm{int}} = \sum_{i} S_{i} \otimes E_{i}$



integrate out QGP

"reduced" density matrix

$$\rho_{Q\bar{Q}} = \text{Tr}_{QGP} \ \rho_{total}$$

master equation

$$\frac{d}{dt}\rho_{Q\bar{Q}} =$$
 ?

What form of the master equation is derived?

Time Scale Hierarchies in OQSs

Three time scales $\, au_S$, $\, au_E$, $\, au_R$ are involved

Here $\tau_E \ll \tau_S$, $\tau_E \ll \tau_R$ are assumed for QBM

system is slow

• System time scale

$$au_S \sim \frac{1}{\Delta E_S}$$

Environmental relaxation time scale

$$\langle A(t)A(0)\rangle \sim e^{-\frac{t}{\tau_E}}$$

System relaxation time scale

$$\langle p(t) \rangle \propto \mathrm{e}^{-\frac{t}{\tau_R}}$$

Quarkonium(=S) in QGP(=E)

$$\tau_S \sim \Delta E_S^{-1} \sim 2 \text{fm}$$

from Coulombic binding energy

$$\tau_E \sim T^{-1} \sim 0.5 \mathrm{fm}$$

QGP temperature ~ 400MeV

$$\tau_R \sim M/T^2 \quad M \gg T$$

kinetic equilibration

Lindblad Master Equation

Following conditions are imposed

$$\mathrm{Tr}\rho_S=1$$

$$\rho_S^{\dagger} = \rho_S$$

$$\forall |\alpha\rangle, \langle \alpha | \rho_S |\alpha\rangle \geq 0$$

No memory effect $au_E \ll au_R$

mathematically proven [Lindblad(76)]

$$\frac{d}{dt}\rho_S = -i\left[H_S, \rho_S\right] + \sum_k \gamma_k \left[L^k \rho_S L^{k\dagger} - \frac{1}{2}\left\{L^{k\dagger} L^k, \rho_S\right\}\right] \qquad \gamma_k > 0$$

Equivalent form

$$\frac{d}{dt}\rho_S = -i\left[H_S, \rho_S\right] + \sum_{i,j} a_{ij} \left[F^i \rho_S F^{j\dagger} - \frac{1}{2} \left\{F^{j\dagger} F^i, \rho_S\right\}\right] \qquad a_{ij} \text{ positive}$$

Forces in Lindblad Master Equation

Quantum descriptions of forces in Brownian Motion

$$\frac{d}{dt}\rho_{Q\bar{Q}} = \begin{bmatrix} & & \\ & + \text{ 2.Random force} \\ & & \\$$

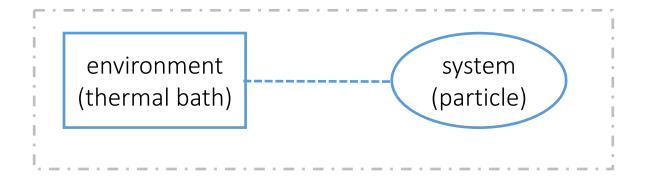
How does quantum dissipation affect quarkonium dynamics in QGP?

so far U(1) only / SU(3) in progress

Remark: What about Caldeira Leggett?

What is Caldeira Legette model? [Caldeira-Leggett(83)]

Prototype of quantum Brownian motion



- Limited application
 - Particles are localized, i.e. wave packet limit
 - Not in Lindblad from

More general description is required

[Akamatsu(14,15), Blaizot(16,18), Brambilla+(17),etc]

Steps in Derivation

$$\frac{d}{dt}\rho_{\mathrm{total}}(t) = -i\left[\sum_{i}S_{i}(t)\otimes E_{i}(t), \rho_{\mathrm{total}}(t)\right]$$
 in interaction picture

after iteratively solving $ho_{ ext{total}}(t)$ with Born-Markov approximation

1. Trace QGP part

 a_{ij} in Lindblad master equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -\int_0^\infty ds \sum_{i,j} \frac{\mathrm{Tr}_{QGP} \left(\rho_{QGP}(t) E^i(t) E^j(t-s)\right)}{\mathrm{tn} \ \mathrm{small} \ \mathrm{s}} \\ \times \left[S^j(t-s)\rho_{Q\bar{Q}}(t) S^i(t) - S^i(t) S^j(t-s)\rho_{Q\bar{Q}}(t)\right] + h.c.$$

Gradient Expansion $| \tau_{QGP} \ll \tau_{Q\bar{Q}} |$

$$\tau_{QGP} \ll \tau_{Q\bar{Q}}$$

$$\underline{S^{j}(t + \tau_{QGP})} \sim S^{j}(t) + \partial_{t}S^{j}(t)\tau_{QGP} + \cdots$$

leading next to leading

Lindblad master equation with Lindblad operator $L^i \sim S^i + \frac{\imath}{4T} \dot{S}^i$

Lindblad Operator for Quarkonium

Interaction Hamiltonian

$$H_{\mathrm{int}} = \sum_{i} S_{i} \otimes E_{i} = \int d^{3}x \left[\delta \left(\vec{x} - \vec{x}_{Q} \right) t_{Q}^{a} - \delta \left(\vec{x} - \vec{x}_{\bar{Q}} \right) t_{\bar{Q}}^{a*} \right] \otimes gA_{0}^{a}(\vec{x})$$

$$i \rightarrow \mathrm{position} \qquad \qquad \mathrm{QGP}$$

Following the steps, Lindblad master equation for quarkonium is derived

$$\frac{d}{dt}\rho_{Q\bar{Q}} = -i\left[H'_{Q\bar{Q}}, \rho_{Q\bar{Q}}\right] + \int dxdy\,a(x-y)\left[F^a(y)\rho_{Q\bar{Q}}F^{a\dagger}(x) - \frac{1}{2}\left\{F^{a\dagger}(x)F^a(y), \rho_{Q\bar{Q}}\right\}\right]$$

Fourier transform to momentum space
$$\frac{d}{dt}\rho_{Q\bar{Q}} = -i[H'_{Q\bar{Q}},\rho_{Q\bar{Q}}] + \int dk \{2 \frac{\mathbf{L}_k^a}{\mathbf{L}_k^a}\rho_{Q\bar{Q}} L_k^{a\dagger} - L_k^{a\dagger} L_k^a \rho_{Q\bar{Q}} - \rho_{Q\bar{Q}} L_k^{a\dagger} L_k^a \}$$
 potential
$$V(x_Q - x_{\bar{Q}}) \in H'_{Q\bar{Q}}$$
 Lindblad operator
$$\mathbf{L}_{\vec{k}}^a = L_{\vec{k}}(\vec{x}_Q,\vec{p}_Q,t_Q^a;\vec{x}_{\bar{Q}},\vec{p}_{\bar{Q}},t_{\bar{Q}}^{a*})$$

Lindblad operator is represented by both HQ and anti HQ d.o.f.

Our study vs related studies

Two approaches to Lindblad equation

dissipation	NRQCD	pNRQCD		
No LO grad. exp.	Kajimoto+(18) ※stochastic Schroedinger eq.	Brambilla+(18,19)		
Yes NLO grad. exp.	Miura+(in progress)	Akamatsu(20)		

※De Boni(17) not in Lindblad form Blaizot+(18) in classical limit

※Yao+(19) in quantum optical & classical limit

Is quarkonium dipole in whole process?

Interpretation of Lindblad Operator

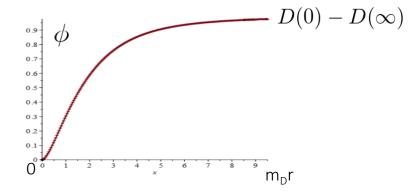
LO gradient expansion(relative motion)

$$L_{\vec{k}}^1 = \sqrt{\frac{D(\vec{k})}{2}} \#_1 \left[e^{i\vec{k}\cdot\hat{\vec{r}}/2} - e^{-i\vec{k}\cdot\hat{\vec{r}}/2} \right] \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \text{other transitions}$$
 rate^{1/2} momentum transfer color rotation(octet-)singlet)

note: D function is related to imaginary potential [Akamatsu+(12),Rothkopf(13)]

$$H_{\text{complex}} = -\frac{\nabla^2}{M} + V(r) + i[D(r) - D(0)]$$

→imaginary potential



Interpretation of Lindblad Operator

LO gradient expansion(relative motion)

$$L^1_{\vec{k}} = \sqrt{\frac{D(\vec{k})}{2}} \#_1 \left[\mathrm{e}^{i\vec{k}\cdot\hat{\vec{r}}/2} - \mathrm{e}^{-i\vec{k}\cdot\hat{\vec{r}}/2} \right] \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \text{+ other transitions}$$

$$\mathrm{rate}^{1/2} \quad \mathrm{momentum \ transfer} \quad \mathrm{color \ rotation}(\mathrm{octet} \rightarrow \mathrm{singlet})$$

NLO gradient expansion

- + anti HQ part
- + other transitions

$$L_{\vec{k}}^{1} = \sqrt{\frac{D(\vec{k})}{2}} \#_{1} e^{i\vec{k}\cdot\hat{\vec{r}}/2} \left[1 - \frac{\vec{k}\cdot\hat{\vec{p}}}{4MT} - \frac{\vec{k}^{2}}{8MT} + \frac{N_{c}V(\vec{r})}{8T} \right] \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}$$

$$g(1)$$

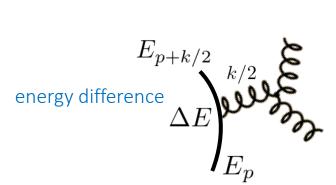
Meaning 1

Collision rate depends on HQ momentum

$$\vec{p} \rightarrow \vec{p} + \vec{k}/2$$

Including NLO,

$$\frac{\Gamma_{\vec{p} \to \vec{p} + \vec{k}/2}}{\Gamma_{\vec{p} + \vec{k}/2 \to \vec{p}}} \sim \exp \left[-\frac{\Delta E}{T} \right]$$
 Detailed balance approximately holds



Interpretation of Lindblad Operator

LO gradient expansion(relative motion)

$$L_{\vec{k}}^1 = \sqrt{\frac{D(\vec{k})}{2}} \#_1 \left[\mathrm{e}^{i\vec{k}\cdot\hat{\vec{r}}/2} - \mathrm{e}^{-i\vec{k}\cdot\hat{\vec{r}}/2} \right] \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \text{+ other transitions}$$
 rate $^{1/2}$ momentum transfer color rotation(octet \rightarrow singlet)

NLO gradient expansion

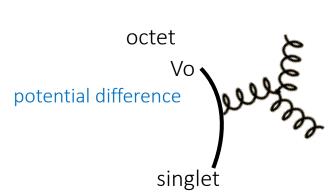
$$L_{\vec{k}}^{1} = \sqrt{\frac{D(\vec{k})}{2}} \#_{1} e^{i\vec{k}\cdot\hat{\vec{r}}/2} \left[1 - \frac{\vec{k}\cdot\hat{\vec{p}}}{4MT} - \frac{\vec{k}^{2}}{8MT} + \frac{N_{c}V(\vec{r})}{8T} \right] \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}$$

Meaning 2

Different color state transition singlet ≒ octet

Including NLO,

$$\frac{\Gamma_{s \to o}}{\Gamma_{o \to s}} \sim \exp\left[-\frac{1}{T}\{V_o - V_s\}\right]$$



Vs

NUMERICAL ANALYSIS

SOLVE RELATIVE MOTION WITH LINDBLAD OPERATORS IN U(1)/SU(3)

Quantum State Diffusion(QSD) method

Stochastic unravelling

[Gisin, Persival (92)]

Lindblad master eq.

equivalent

nonlinear stochastic Schrödinger eq.

density matrix

$$\rho_{Q\bar{Q}}(x, y, t)$$

$$= \langle \psi(x, t)\psi^*(y, t) \rangle$$

wave function

nonlinear stochastic Schrödinger eq. form

$$\begin{split} |d\psi\rangle &= -iH'_{Q\bar{Q}}\,|\psi(t)\rangle\,dt \,+ \int d\vec{k} \big(2\langle\underline{L}_{\vec{k}}^{\dagger}\rangle_{\underline{\psi}}L_{\vec{k}} - \underline{L}_{\vec{k}}^{\dagger}L_{\vec{k}} - \underline{\langle L_{\vec{k}}^{\dagger}\rangle_{\underline{\psi}}}\,|\psi(t)\rangle\,dt \\ &+ \int d\vec{k} \big(L_{\vec{k}} - \underline{\langle L_{\vec{k}}\rangle_{\underline{\psi}}}\big)\,|\psi(t)\rangle\,d\xi_{\vec{k}} \\ &\rightarrow \text{nonlinearity} \end{split}$$

complex noise property $d\xi_{\vec{k}}d\xi_{\vec{k}'}^* = \delta(\vec{k} - \vec{k}')$

Apply QSD method to Lindblad master equation

QSD Simulation Setups

For simplicity, in one spatial dimension

Parameter setups in heavy quark mass unit

Δx	Δt	N_x	T	γ	$l_{ m corr}$	α	m_D	$r_{ m c}$
1/M	$0.1M(\Delta x)^2$	254		T/π	1/T	0.3	2T	$\overline{1/M}$

correlation function

$$D(r) = \gamma \exp(-r^2/l_{\rm corr}^2)$$

Debye screening potential

$$D(r) = \gamma \exp(-r^2/l_{\text{corr}}^2)$$
 $V(r) = -\frac{\alpha}{\sqrt{r^2 + r_c^2}} e^{-m_D r}$

note: in SU(3) $C_FV(r)$

Fixed temperature case

$$T = 0.1M, 0.3M$$

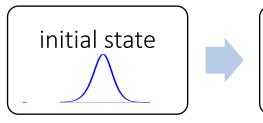
Bjorken expanding QGP case

$$T(t) = T_0 \left(\frac{t_0}{t + t_0}\right)^{1/3}$$
 $T_0 = 470 \,\text{MeV}$
 $t_0 = 0.84 \,\text{fm}$

QSD Simulation Outline

For simplicity, in one spatial dimension

Outline of numerical calculations



QSD evolution event by event

occupations

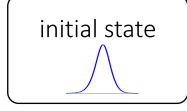
singlet eigenstate
$$\phi_i(x)$$

$$H = \frac{p^2}{M} + V_{\text{Debye}}$$

$$N_{i} = \int dx dy \, \phi_{i}^{*}(x) \rho(x, y) \phi_{i}(y)$$

$$H = \frac{p^{2}}{M} + V_{\text{Debye}}$$

✓ Bjorken expanding QGP case



QSD evolution event by event

occupations

vacuum eigenstate $\phi_i(x)$

$$H = \frac{p^2}{M_b} - \frac{\alpha}{r} + \sigma r$$
$$\sigma = 0.01 M_b^2$$

$$H = \frac{p^2}{M_b} - \frac{\alpha}{r} + \sigma r$$

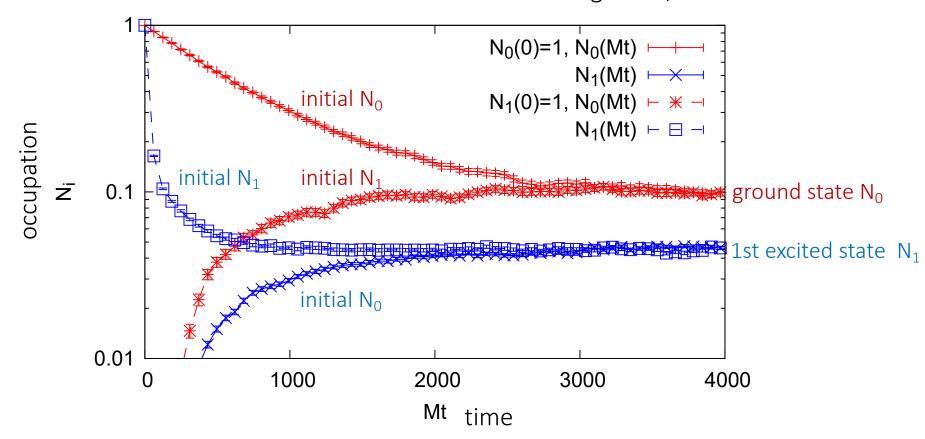
Fixed temperature case

Results - Equilibration(U1)

lacksquare Time evolution of occupation number of eigenstates $H=rac{p^2}{M}+V_{
m Debye}$

$$H = \frac{p^2}{M} + V_{\text{Debye}}$$

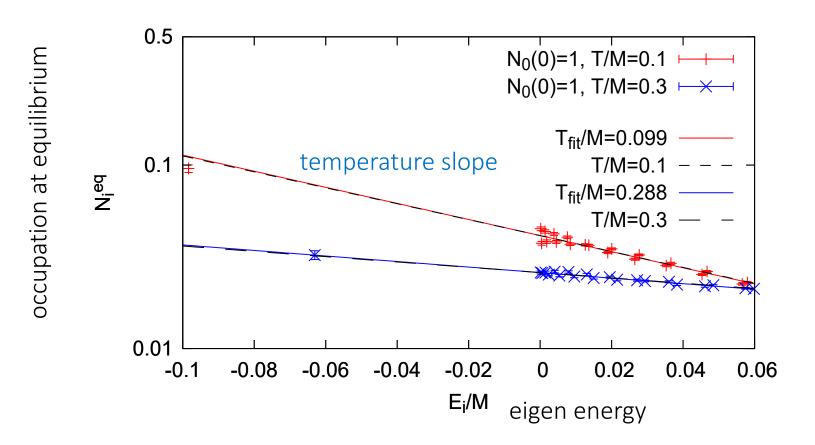
Initial state ground/1st excited state



Each occupation approaches the value independent of initial state

Results - Distribution at Equilibrium(U1)

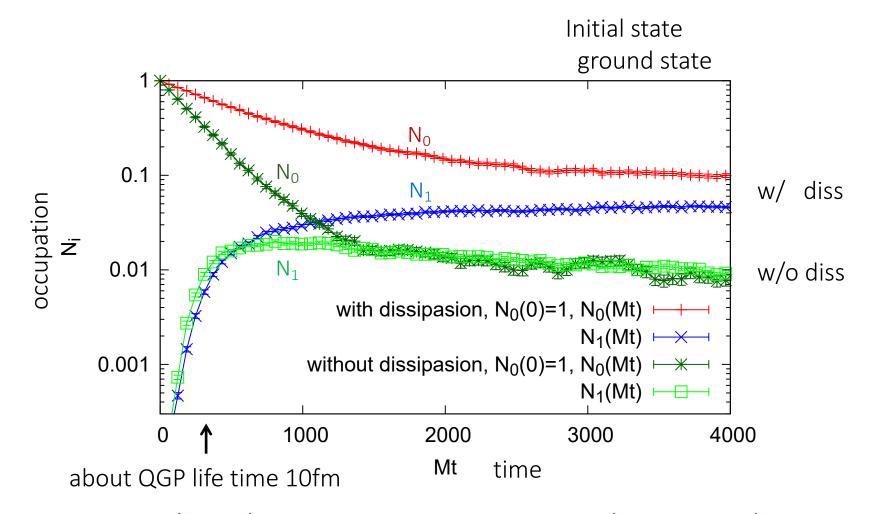
■ Eigenstate steady distribution at Mt=4650 (T/M=0.1) $H=rac{p^2}{M}+V_{
m Debye}$ at Mt=900 (T/M=0.3)



Eigenstate distribution approches the Boltzmann distribution

Results - Dissipative Effect(U1)

lacksquare Time evolution of occupation number of eigenstates $H=rac{p^2}{M}+V_{
m Debye}$



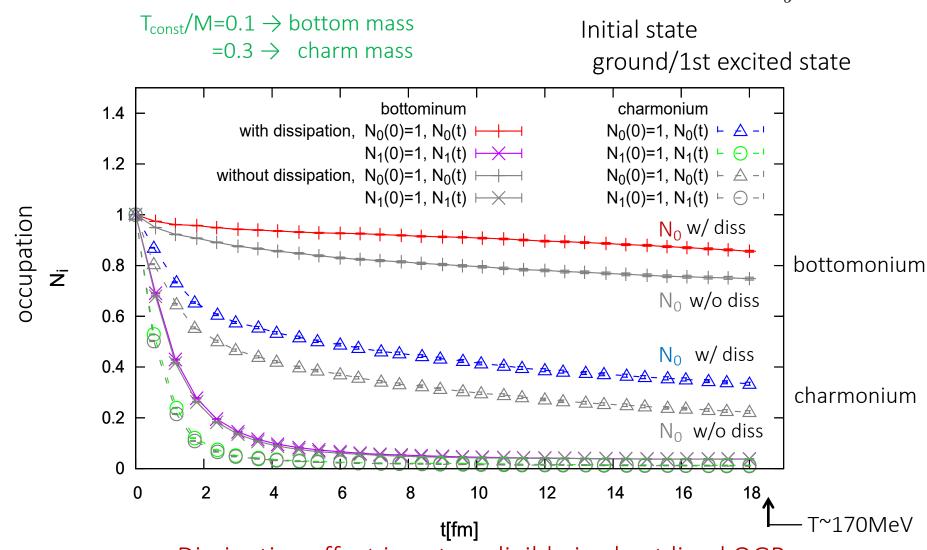
Without dissipation, occupations are underestimated Dissipation can be effective in QGP life time

Bjorken expanding QGP case

Results - Bjorken Expanding QGP(U1)

■ Time evolution of occupations of eigenstates

$$H = \frac{p^2}{M_b} - \frac{\alpha}{r} + \sigma r$$



Dissipative effect is not negligible in short lived QGP

<u>Summary</u>

- Quarkonium as an open system
 - It is described by Lindblad master equation with positivity
 - Lindblad operator with heavy quark color is derived
- Numerical Simulations via Quantum State Diffusion
 - We confirmed thermalization with dissipation
 - Dissipation affects even in short time scale, in Bjorken expanding QGP

Outlook

3D analysis

Comparison to semi-classical description