CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-08 20:48:06.756040 GMT Run / Event / LS: 326382 / 309207 / 7

Particle Identification at the CMS experiment

Wei Li Rice University, Houston, USA

India+ lecture October 20, 2022

<u>Outline</u>

- CMS experiment at the LHC
 - Sub-detector systems
 - Particle Identification technique and performance
- Highlights of results with PID from ion runs 1 and 2
 - Collectivity in small systems
 - Heavy flavor physics
- Upgrades for the High Luminosity LHC (2029) on PID

"Little Bangs" in the laboratory

made by Chun Shen

"Little Bangs" in the laboratory

Heavy Ion Collisions

Most violent collisions

Re-creating the Little Bangs!

Large Hadron Collider at CERN – energy frontier of nuclear and particle physics (85% pp and 15% heavy ions)

Compact Muon Solenoid

ISed

QGP detectors at the LHC (present)

220 m² of Silcons

E field Traditional Silicon detector

Eletromagnetic calorimeters

- Homogenous calorimeter
- ~76,000 PbWO₄ crystals
 - 2.3 x 2.3 x 23 cm³, 3 lbs
- Radiation hard, dense, and fast
- B field and radiation require novel electronics APD, VPT

Eletromagnetic calorimeters

Endcap ECAL

Hadronic calorimeters

- Sampling calorimeter with Barrel, Endcap, and Forward
- HCAL Barrel (HB) and Endcap (HE):
 - Brass absorber from Russian artillery shells (non-magnetic)
 - Scintillating tiles with wavelength shifting (WLS) fiber
 - Read out by SiPMs
 - Tower size is $\Delta \eta \times \Delta \phi = 0.087 \times 0.087$
 - Corresponds to 5x5 ECAL crystal grid
- HCAL Forward
 - Steel absorber
 - Cherenkov light from Quartz Fibers
 - Read out with PMTs

The Muon System

9

-

1

Log Test

5

.

.....

5

The Muon System

Three ionizing gas technologies:

- Drift Tube (Barrel)
- Resistive Plate Chamber (Barrel, Endcap)
- Cathode Strip Chamber (Endcap)

Each unit η is covered by two

Drift Tubes (barrel)

- Timing of ionization signal with known drift velocity gives spatial position
 - Gas : Ar (85%) + CO₂ (15%)
 - $\sigma_t \sim \text{few ns gives } \sigma_x \sim 250 \ \mu\text{m resolution}$
 - Known field shaping is critical
- 250 chambers in CMS barrel
- 12 (8) layers in MB1-MB3 (M4)
 - 44 spatial measurements, over 3 m

Resistive Plate Chambers (barrel, endcap)

- 480 barrel + 576 endcap chambers
- Large area, fast signal with modest resolution for triggering
- Charge induced onto external strips
- Bakelite ρ ~10¹⁰ Ω -cm
 - Transparent to signal
 - Quenches avalanche
 - Double gap, each 2 mm, 9.6 kV, for high ϵ
- Modest gain for rate capability and longevity
- Gas mix: C₂H₂F₄/isoC₄H₁₀/SF₆
 95.2/4.5/0.3%

Cathode Strip Chambers (endcap)

- 540 chambers in CMS endcaps
- Precise interpolation of charge induced on cathode strips gives ~200 µm accuracy
- 6 layers in z
 - precision φ from cathode strips
 - coarse *r* from anode wires

Compact Muon Solenoid!

Two-particle correlations and Collective Flow

PbPb 35-40% centrality

Discovery of "QGP" in small systems

Opened a new era of QCD studies in the high density limit

PID spectra in small systems

PID spectra in small systems

Topological reconstruction of strange hadrons over wide p_T and η ranges (no PID of pi/K/p)

Baryon-to-meson ratios

Baryon/meson enhancement in high-multiplicity events

Baryon-to-meson ratios

- Baryon/meson enhancement in high-multiplicity events
- From low- to high-multiplicity events
 Larger separation in smaller system

 Larger radial flow?

Spectra and "radial flow" in small systems

Mass-dependent splitting of KE_T as N_{trk} increases, faster in small systems - common velocity field

Spectra and "radial flow" in small systems

Simultaneous Blast-Wave fits:

$$\langle \beta_T \rangle_{pp} > \langle \beta_T \rangle_{pPb} > \langle \beta_T \rangle_{PbPb}$$

for similar N_{trk}

Spectra and "radial flow" in small systems

Anisotropy flow in small systems

Mass ordering of v₂

Smaller QGP more explosive?!

Keep pushing to extreme domains:

<u>Heavy</u> quark collectivity in <u>small</u> systems

pp/pA

Keep pushing to extreme domains:

<u>Heavy</u> quark collectivity in <u>small</u> systems

Heavy flavor hadrons (D, B, J/ ψ , ...)

- Perturbative scale
- Produced at early stages
Heavy quark collectivity in large AA systems

Strong charm flow similar to light flavor in AA at RHIC and the LHC

Heavy quark collectivity in large AA systems

Strong charm flow similar to light flavor in AA at RHIC and the LHC

✓ Strong charm flow, maybe some indication $< v_2(K)$

✓ Strong charm flow, maybe some indication < v₂(K)
 ✓ Beauty flow < charm flow (flavor hierachy)?!

Charm vs. Beauty

✓ Strong charm flow, maybe some indication < v₂(K)
 ✓ Beauty flow < charm flow (flavor hierachy)?!

✓ Strong charm flow, maybe some indication < $v_2(K)$ ✓ (Surprisingly!?) large J/ ψ v2 signal → ISC needed?

 \checkmark (Surprisingly!?) large J/ ψ v2 signal \rightarrow ISC needed?

600

200

Entries / 10 MeV

 \checkmark Strong charm flow, maybe some indication < $v_2(K)$ ✓ (Surprisingly!?) large J/ψ v2 signal → ISC needed?

Summary and outlook

	рр		pPb	
	V ₂	yield	V ₂	yield
Open Charm Meson	\checkmark	\checkmark	\checkmark	\checkmark
Open Beauty Meson	\checkmark	\checkmark	\checkmark	\checkmark
Open Charm Baryon	X	\checkmark	X	\checkmark
Open Beauty Baryon	X	x	X	X
Charmonia	X	\checkmark	\checkmark	\checkmark
Bottomonia	X	\checkmark	X	\checkmark

Most \checkmark to be improved with better precision

A comprehensive open heavy flavor program

QGP thermometer with Quarkonia

A new excited beautiful strange baryon!

The Big Bang

Upgraded apparatus by new technology!

QGP detectors at the LHC (present)

Wide coverage tracking (lηl<2.4) and full calorimetry (lηl<5)

Excellent hadron PID over wide p_T coverage

Mid-rapidity

Forward rapidity

Excellent complementarities but no one detector for all

Wider coverage, better precision, higher rate, and ...

Subdetector	CMS present	CMS Phase-2
Inner Tracker	$ \eta < 2.4,$ 100×150 μ m ² pixel size	$ \eta < 4,$ 50×50 μ m ² pixel size
Calorimeter	Low-granularity	High-granularity end- cap with silicon sensors
Muon detector	$ \eta < 2.4$	$ \eta < 2.8$
L1 trigger bandwidth	30 kHz for PbPb, 100 kHz for pp and pPb	750 kHz (pass through all PbPb events)
DAQ throughput	6 GB/s	60 GB/s

Table 1: Main features of CMS detector at present and Phase 2 upgrades.

Wider coverage, better precision, higher rate, and ...

Table 1: Main features of CMS detector at present and Phase 2 upgrades.

Subdetector	CMS present	CMS Phase-2
Inner Tracker	$ \eta < 2.4,$ 100×150 μ m ² pixel size	$\frac{ \eta < 4}{50 \times 50 \ \mu \text{m}^2 \text{ pixel size}}$
Calorimeter	Low-granularity	High-granularity end- cap with silicon sensors
Muon detector	$ \eta < 2.4$	$ \eta < 2.8$
L1 trigger bandwidth	30 kHz for PbPb, 100 kHz for pp and pPb	750 kHz (pass through all PbPb events)
DAQ throughput	6 GB/s	60 GB/s

Wider coverage, better precision, higher rate, and ...

Table 1: Main features of CMS detector at present and Phase 2 upgrades.

Subdetector	CMS present	CMS Phase-2	1.2 1 0.8
Inner Tracker	$ \eta < 2.4,$ 100×150 μ m ² pixel size	$ \eta < 4,$ 50×50 μ m ² pixel size	
Calorimeter	Low-granularity	High-granularity end- cap with silicon sensors	⁴ (⁴) ₉) 0 -1 -6 -4 -2 5 ⁽¹⁾
Muon detector	$ \eta < 2.4$	$ \eta < 2.8$	
L1 trigger bandwidth	30 kHz for PbPb, 100 kHz for pp and pPb	750 kHz (pass through all PbPb events)	all PbPb evts
DAQ throughput	6 GB/s	60 GB/s	read out

EPOS-LHC pPb 8.8 TeV

N_{trk}>100

CMS Phase-2 Simulation

 $1 < p_{-}^{trig} < 3 \text{ GeV/c}$

 $1 < p_{=}^{assoc} < 3 \text{ GeV/c}$

Wider coverage, better precision, higher rate, and ...

Table 1: Main features of CMS detector at present and Phase 2 upgrades.

Subdetector	CMS present	CMS Phase-2	
Inner Tracker	$ \eta < 2.4,$	$ \eta < 4,$	
	$100 \times 150 \ \mu m^2$ pixel size	$50 \times 50 \ \mu m^2$ pixel size	
Calorimeter	Low-granularity	High-granularity end-	SC(3) 0 -1 -2 M
		cap with silicon sensors	
Muon detector	$ \eta < 2.4$	$ \eta < 2.8$	
L1 trigger bandwidth	30 kHz for PbPb,	750 kHz (pass through	all DhDh avta
	100 kHz for pp and pPb	all PbPb events)	
DAQ throughput	6 GB/s	60 GB/s	read out
Time-of-flight	N/A	MTD for charged hadron	
for Particle ID		PID over $ \eta < 3.0$	

Approaching particle-by-particle true-level event info.

EPOS-LHC pPb 8.8 TeV

N_{trk}>100

CMS Phase-2 Simulation

 $1 < p^{trig} < 3 \text{ GeV/c}$

 $1 < p_{-}^{assoc} < 3 \text{ GeV/c}$

Toward a comprehensive QGP detector

BTL: LYSO bars + SiPM readout:

- TK / ECAL interface: $|\eta| < 1.45$
- · Inner radius: 1148 mm (40 mm thick)
- Length: ±2.6 m along z
- Surface ~38 m²; 332k channels
- Fluence at 4 ab⁻¹: 2x10¹⁴ n_{eg}/cm²

ETL: Si with internal gain (LGAD):

- On the CE nose: $1.6 < |\eta| < 3.0$
- Radius: 315 < R < 1200 mm
- Position in z: ±3.0 m (45 mm thick)
- Surface ~14 m²; ~8.5M channels
- Fluence at 4 ab⁻¹: up to 2x10¹⁵ n_{eg}/cm²

CMS Mip Timing Detector (MTD)

Toward a comprehensive QGP detector

59

Toward a comprehensive QGP detector

- Unique hermeticity in PID with CMS-MTD (IηI<3)
- Complementarity to ALICE (IηI<0.9) and LHCb (2<η<5)

Barrel Timing Layer

Design:

- 72 trays covering a surface of ~38 m²
- Material budget: < 0.4 X₀
- Rapidity coverage: lηl < 1.5
- Timing resolution: ~ 30 ps

Sensors:

- L(Y)SO:Ce crystal bars as scintillator:
 - Excellent radiation tolerance, high signal and fast response time.
- Silicon Photomultipliers as detectors:
 - · Compact, fast and insensitive to magnetic fields.

Endcap Timing Layer

Design:

- 2 disks covering a surface of $\sim 14 \text{ m}^2$
- Material budget: < 0.2 X₀
- Rapidity coverage: $1.6 < |\eta| < 3.0$
- x10 higher radiation level than BTL
- Timing resolution: ~ 30-50 ps

Sensors:

- Ultra fast silicon detectors:
 - Low gain avalanche diodes optimised for precision timing.

Low Gain Avalanche Diodes (LGADs)

High E field \rightarrow larger, faster signal \rightarrow better timing resolution

E field Traditional Silicon detector

Ultra Fast Silicon Detector E field

Precision timing and position – technology of the future tracker!

Low Gain Avalanche Diodes (LGADs)

High E field \rightarrow larger, faster signal \rightarrow better timing resolution

Prototype LGADs+ASICs: **42-46 ps** in beam tests

Precision timing and position – technology of the future tracker!

Unique Physics with CMS-MTD

Questions

- What is the (3+1)D dynamics of heavy flavors in QGP?
- How does QGP medium
 response to energy loss?
- What is origin of collectivity in smallest systems?

Measurements

Heavy flavor hadrons over wide y (D/D_s/ Λ_c , B/B_s/ Λ_b)

Jet – **identified** hadron correlations over wide angles

Correlations with a wide range of identified probes

Wide-coverage Tracking	Precision vertex	Full calorimetry (ECAL+HCAL)	High rate/HLT	Lepton PID	Hadron PID
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√ (MTD)

(3+1)D heavy flavor dynamics in QGP

Constrain HF dynamics with a variety of hadrons $(D/D_s/\Lambda_c, B/B_s/\Lambda_b)$ with high precision and wide acceptance coverage (3-D) by MTD

(3+1)D heavy flavor dynamics in QGP

Elliptic flow of charm baryon vs meson

MTD to test HF dynamics and hadronization with a variety of hadrons $(D/D_s/\Lambda_c, B/B_s/\Lambda_b)$ with high precision and wide kinematics coverage

Quarkonia and Exotica with MTD

Opportunities in quarkonia and exotica with hadronic decays in pp and AA!

Medium response to jet quenching

"Tracing the flavors"

Flavor composition in and outside a jet➢ medium response to energy loss

Diffusion of multi-scale probes:
➤ Charm, bottom: "Brownian motion"
➤ Light flavor: evolution of net-B, S, Q

Medium response to jet quenching

Detailed energy profile around jets over wide angle (from di-jets, γ+jets, Z+jets)

Need baryon-to-meson ratios differential in Δr to $\Delta r > 1!$

Medium response to jet quenching

Unique measurement only possible by CMS with the MTD!
Emergence of collectivity in small systems

Light-flavor diffusion: net-B, S, Q

8

CMS-MTD simulation

Light-flavor diffusion: net-B, S, Q CMS-MTD simulation

A (hyper)(anti)light nuclei factory by MTD

A (hyper)(anti)light nuclei factory by MTD

³He/⁴He flow in PbPb

Strong constraints to light nuclei production in pp, pA, AA (SHM vs. coalescence)

~ 10 trillion/year MB pp recorded

A rich program by CMS and MTD at HL-LHC

Unique science goals	Key observables
QGP medium response to parton energy loss	• Jet-hadron correlations to $\Delta r > 1$ with PID
(3+1)D heavy flavor dynamics and hadronization in QGP	- HF baryon/meson yields and collective flow (v_n) vs y, $p_{\rm T}$
Fluctuations and transport of conserved quantum charges in QGP	 Long-range PID two-particle correlations in Δy and Δφ Charge balance function to IΔyl>2 High-order cumulants (C₄) vs y_{max}
Origin of collectivity in small system	 LF and HF collective flow (v_n)
Mechanism of light nuclei production over wide phase space	- Light nuclei yields and collective flow $(v_{n}) \ vs \ y \ and \ p_{T}$

and be prepared for surprises!

"Little Bangs" 2000: RHIC 1st discover era of perfect QGP liquid

2009: LHC

2030+: HL-LHC

Approaching true-level event info.

<u>Backups</u>

Multi-charm hadrons in QGP with MTD?

Low Gain Avalanche Diodes (LGADs)

Medium response to jet quenching

Ratios of **PID** Jet yields in-cone vs out-of-cone

Can also be performed with γ/Z +jets

Unique measurement only possible by CMS with the MTD!