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Introduction

I Perturbation theory is valid only at large temperatures, owing to asymptotic freedom
of QCD at high energy scales.

I At scales of our interest near the chiral phase transition, the perturbation theory fails
as the coupling constant αs > 1.

I Thus, non-perturbative methods like lattice QCD need to be used.

I We will focus on finite temperature mesonic correlators, which are useful for
calculating the mesonic energy eigenvalues using the spectral decomposition of the
excitations.

I At finite temperatures, the temporal span is constrained as Nτ = 1/(aT ) making
the long distance behaviour for temporal correlator difficult to study. Instead, we
calculate correlator propagating in spatial direction called screening correlator and
extract screening mass from it.
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Introduction

I Why are screening masses an important observable?

1 The inverse of a screening mass is the screening length, i.e., the spatial distance
beyond which the effects of a test hadron are effectively screened. Thus, they provide
important length scales of the system.

2 They give an idea about relevant degrees of freedom at high temperatures.

3 They are related to the pole masses via the same spectral function giving a handle on
understanding it.

4 They can be used to locate the temperature where chiral and U(1)A symmetries are
effectively restored.

5 They can be used to check the accuracy of the predications from the perturbation
theory.
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Introduction

I Correlator on lattice are calculated by introducing fermions on lattice. But
discretizing fermions creates an issue called fermion doubling where you get
unphysical contribution from additional fermions called doublers.

I To take care of this, we use what is called the staggered fermions.

I Staggered fermions resolve the problem of fermion doubling by effectively doubling
the lattice spacing a→ 2a, reducing the Brillouin zone by half and thus eliminating
the contributions of the doublers.

I Lattice is divided into hypercubes of unit length. Placing a single fermionic degree of
freedom on each point in a hypercube gives us 24 = 16 fermionic degrees of
freedom. Using these 16 degrees of freedom, we get 4 flavors of Dirac fields which
we call tastes of staggered fermions.
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Introduction

I The partition function, after integrating the fermionic degrees of freedom, at finite
temperature T and chemical potential µ:

Z(T ,µ) =
∫
DU ∆(T ,µ) e−SG (T ),

where U are the gauge links, SG is the gauge action, and ∆(T ,µ) is the fermion
determinant given by

∆(T ,µ) =
∏

f =u,d,s

[
detMf (mf ,T , µf )

]1/4
,

where Mf (mf ,T , µf ) is the staggered fermion matrix for flavor f .

I The expectation value of operator O at finite µ and T :

〈O(T ,µ)〉 = 1
Z(T ,µ)

∫
DU e−SG (T )O(T ,µ) ∆(T ,µ).
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Introduction

I The integration over the gauge links U is carried out using importance sampling.

I The current lattice QCD techniques available limit the simulation to only zero
chemical potential as adding chemical potential makes the action complex making it
difficult to use importance sampling. This issue is called the sign problem.

I Our analysis bypasses this difficulty in our analysis by expanding the screening
correlator in a Taylor series of chemical potential and thus obtaining a first order
correction to the screening mass.

I We will only consider isoscalar chemical potential µS ≡ µu = µd .
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Screening correlator

I Staggered meson operator M(x) is used to obtain the screening correlator.

I 4 tastes of staggered quarks give 4× 4 = 16 meson tastes.

I Different taste mesons have different masses which become degenerate in the
continuum limit.

I We consider the meson taste having a local operator for which the meson operator
can be written as

MΓ(x) = φΓ(x)χ̄i (x)χj(x)

where χ̄i and χj are staggered quark fields with flavor indices i and j respectively,
x = (x , y , z , τ), and φΓ(x) is a phase factor that depends upon the spin and taste
quantum numbers of the meson.

I We only consider the staggered light pseudoscalar meson, for which (i , j) = (u, d)
and φ(x) = 1 for all x .
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Screening correlator

I The meson correlator G(x ,T ,µ) is the two-point function of the corresponding
meson operator:

G(x ,T ,µ) ≡ 〈M(x)M(0)〉
= 〈Tr

[
Pu(x , 0, µu)P†d (x , 0,−µd)

]
〉

where the trace is over the color indices and Pk(x , y , µk) is the staggered quark

propagator for the kth flavor.

I For isoscalar chemical potential, we define G(x ,T , µS):

G(x ,T , µS) ≡ Tr
[
P(x , 0, µS)P†(x , 0,−µS)

]
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Screening correlator

I The correlator now is given as:

G(x ,T , µS) =

∫
DU e−SG (T ) G(x ,T , µS) ∆(T , µS)∫

DU e−SG (T ) ∆(T , µS)
.

I Expanding G(x ,T , µS) in a Taylor series in µS/T :

G(x ,T , µS) =
∞∑
k=0

G(k)(x ,T )

k!

(µS

T

)k
,

where the Taylor coefficients G(k)(x ,T ) are evaluated at µS = 0. By differentiating

w.r.t. µ̂S = µS/T , we find that the first three Taylor coefficients are given by

G(0)(x ,T ) = 〈G〉,

G(1)(x ,T ) = 〈G ′〉, and

G(2)(x ,T ) =

〈
G ′′ + 2G ′

∆′

∆
+ G

∆′′

∆

〉
− 〈G〉

〈
∆′′

∆

〉
, (1)
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Screening correlator

I The screening correlator C(z ,T , µS) is obtained from G(x ,T , µS) by summing over
x , y and τ i.e.

C(z ,T , µS) =
1

NτN2
σ

∑
x,y,τ

G(x ,T , µS).

I Its Taylor expansion follows simply:

C(z ,T , µS) =
∞∑
k=0

C (k)(z ,T )

k!

(µS

T

)k
,

C (k)(z ,T ) =
1

NτN2
σ

∑
x,y,τ

G(k)(x ,T ).
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Free theory

I Free theory correlator equation (JHEP 2007(03): 022) for zT � 1

Cfree(z ,T , µS)

T 3
=

3

2

e−2πzT

zT

[(
1 +

1

2πzT

)
cos(2zµS) +

µS

πT
sin(2zµS)

]
+O

(
e−4πzT

)
.

I By differentiating w.r.t. µ̂S , we obtain the first few Taylor coefficients as (with
ẑ ≡ zT )

C
(0)
free(z ,T )

T 3
=

3e−2πẑ

2ẑ

(
1 +

1

2πẑ

)
,

C
(2)
free(z ,T )

T 3
= 6ẑe−2πẑ

(
1

2πẑ
− 1

)
,

C
(4)
free(z ,T )

T 3
= 24ẑ3e−2πẑ

(
1− 3

2πẑ

)
, C

(1)
free(z ,T ) = C

(3)
free(z ,T ) = 0.
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Free theory
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Figure: (left) Free theory Correlator with its derivatives for 803 × 8 lattice along with theoretical
curve. (right) Summed A(µS , zT ) = ẑC(µS , zT )e2πẑ for µ = 0.5 along with the exact expression.
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Free theory

I We rewrite the correlator in the familiar form C = Ae−Mz , now having complex
amplitude and complex screening mass

Cfree(z ,T , µS)

T 3
=

3

2

e−2πzT

zT

[(
1 +

1

2πzT

)
cos(2zµS) +

µS

πT
sin(2zµS)

]
= Re

[
A(µS)e−zM(µS )

]
,

= e−zMR (µS )
[
AR(µS) cos(zMI (µS) + AI (µS) sin(zMI (µS)

]
,

M(µS) = 2πT + 2iµS ≡ MR(µS) + iMI (µS),

A(µS) =
3

2zT

(
1 +

1

2πzT

)(
1− i

µS

πT

)
≡ AR(µS)− iAI (µS).

I Note, MR and AR are even functions of µS , while MI and AI are odd functions of µS .
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Free theory

The exponential factor of the C (n) cancel out if we define the ratios

Γ(ẑ) ≡ C (2)(z ,T )

C (0)(z ,T )
and Σ(ẑ) ≡ C (4)(z ,T )

C (0)(z ,T )
,

Γfree(ẑ) = −4ẑ2

(
1− 1

2πẑ

)/(
1 +

1

2πẑ

)
, Σfree(ẑ) = 16ẑ4

(
1− 3

2πẑ

)/(
1 +

1

2πẑ

)
,

= −4ẑ2 +
4ẑ

π
− 2

π2
+O

(
ẑ−1
)
, = 16ẑ4 − 32ẑ3

π
+

16ẑ2

π2
+O (ẑ) ,

≡ α2ẑ
2 + α1ẑ + α0, ≡ β4ẑ

4 + β3ẑ
3 + β2ẑ

2.

-90

-75

-60

-45

-30

-15

 0

 0  1  2  3  4  5

zT

Γfree (zT)

803 x 8 lattice

  Nτ = 8

Exact

 0

 1500

 3000

 4500

 6000

 7500

 9000

 0  1  2  3  4  5

zT

Σfree (zT)

803 x 8 lattice

  Nτ = 8

Exact

Rishabh Thakkar (CHEP) Indian Institute of Science, Bangalore January 5, 2023 15 / 26



Free theory

I To compare the approach of Γ and Σ for the large ẑ limit, we look at Γ/ẑ2 and Σ/ẑ4

Γfree

ẑ2
= −4 +

4

πẑ
− 2

π2ẑ2
,

Σfree

ẑ4
= 16− 32

πẑ
+

16

π2ẑ2
.
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I The curves approach the value of the constant term asymptotically as the
contribution from other terms decrease at large ẑ .

I Γ/ẑ2 approach the negative constant value of -4 from above while Σ/ẑ4 approach a
positive constant value of 16 from below.
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Finite temperature

I Like free theory, we postulate that the finite-temperature screening correlator can be
written with complex screening mass and screening amplitude as

C(z ,T , µS)

T 3
= e−zMR (µS )

[
AR(µS) cos (zMI (µS)) + AI (µS) sin (zMI (µS))

]
.

I MR and AR are even functions of µS , while MI and AI are odd functions of µS . This
follows from the hermitian conjugate of G(x ,T , µS) = Tr

[
P(x , 0, µS)P†(x , 0,−µS)

]
G(x ,T , µS)∗ = G(x ,T ,−µS)

=⇒ C(z ,T , µS)∗ = C(z ,T ,−µS)

I Hence, odd (even) derivatives of MR and AR (of MI and AI ) vanish.

I Next, like in free theory we obtain Γ and Σ by taking derivative of the correlator
expression.

Rishabh Thakkar (CHEP) Indian Institute of Science, Bangalore January 5, 2023 17 / 26



Finite temperature

I Expression for Γ and Σ are

Γ(z) = −z2 (M ′I )2
+ z

[
2
A′I
AR

M ′I −M ′′R

]
+

A′′R
AR

,

≡ α2ẑ
2 + α1ẑ + α0,

Σ(z) = z4 (M ′I )4
+ z3

[
6M ′′RM

′2
I − 4

A′I
AR

M ′3I

]
+O(z2),

≡ β4ẑ
4 + β3ẑ

3 + β2ẑ
2 +O(ẑ)

I Like free theory, Γ is quadratic in ẑ and Σ are quartic in ẑ .

I The lowest order corrections M ′I and M ′′R to the screening mass can be obtained
from the coefficients of these polynomials as

M̂ ′I = (−α2)1/2 = β
1/4
4 and M̂ ′′R =

1

4

(
2α1 −

β3

α2

)
.
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Finite temperature
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Nσ β T[GeV] ml ms configurations
32 9.670 2.90 0.0001399 0.002798 12700
64 9.670 2.90 0.0001399 0.002798 6000
64 9.360 2.24 0.00018455 0.003691 6000

Table: The list of HISQ configurations used for the finite temperature. All the configurations
used here have Nτ = 8 with strange quark mass tuned to physical value.
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Finite temperature

Γ

Γfree
=

α2ẑ
2 + α1ẑ + α0

−4ẑ2 + 4ẑ/π − 2/π2
,

Σ

Σfree
=

β4ẑ
4 + β3ẑ

3 + β2ẑ
2

16ẑ4 − 32ẑ3/π + 16ẑ2/π2
.
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I For large ẑ , both curves seem to slowly approach the plateauing values
corresponding to the ratio of the highest polynomial coefficients.

I The data points curve upwards near ẑ = Nσ/(2Nτ ) suggesting significant boundary
effects (except the ẑ = Nσ/(2Nτ ) point itself).
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Finite temperature

-2.6

-2.55

-2.5

-2.45

-2.4

-2.35

-2.3

-2.25

-2.2

-2.15

 1  1.5  2  2.5  3  3.5  4

zT

Γ/(zT)2 323x8 lattice
T = 2.90 GeV

-2.6

-2.55

-2.5

-2.45

-2.4

-2.35

-2.3

-2.25

-2.2

-2.15

 1  1.5  2  2.5  3  3.5  4

zT

Γ/(zT)2 643x8 lattice
T = 2.24 GeV
T = 2.90 GeV

 5

 5.5

 6

 6.5

 7

 7.5

 8

 1  1.5  2  2.5  3  3.5  4

zT

Σ/(zT)4

323x8 lattice
T = 2.90 GeV

 5

 5.5

 6

 6.5

 7

 7.5

 8

 1  1.5  2  2.5  3  3.5  4

zT

Σ/(zT)4

643x8 lattice
T = 2.24 GeV
T = 2.90 GeV

I The boundary effects are clearly visible with ẑ = Nσ/(2Nτ ) point unaffected.

I Like free theory curves, these are expected to approach the value of the constant
term asymptotically at large ẑ .

I Unlike the free theory Γ/ẑ2 (Σ/ẑ4) for the finite temperature curve encounters
minima (maxima) at ẑ = ẑΓ (ẑ = ẑΣ) before approaching the asymptotic value from
below (above).

I This difference in the large ẑ approaching behaviour enforces the signs of α1 (β3)
and α0 (β2) to be different from the free theory value.

I We also note that these minima and maxima shift to larger ẑ with increasing
temperature and eventually vanishing for free theory.
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Finite temperature

Evaluating polynomial coefficients:

I Instead of keeping all the three coefficients as fit parameters, the lowest order
coefficients α0(β2) were estimated in terms of α1(β3) using the location of the
extremum points ẑΓ(ẑΣ) discussed earlier.

α0 = −α1ẑΓ

2
, β2 = −β3ẑΣ

2
.

I The polynomial fits obtained for various windows between ẑmin and ẑmax show very
little variation for changing ẑmax. Thus, we fix the upper fit window to ẑmax = 3.25
and obtain a plateau for the fit coefficients by varying the ẑmin.
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Finite temperature
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2.90 GeV 2.500(16) -2.117(18) -2.175(87)
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Finite temperature
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2.90 GeV 3.125(25) 5.815(365) 10.667(2321)

Free theory 16 −32/π ≈ −10.186
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Finite temperature

Temp T M′′R M′I

2.24 GeV 0.263(169) 1.426(5)

2.90 GeV 0.172(328) 1.455(6)

Free theory 0 2

I The α’s reach a plateau value at a smaller ẑ and with smaller error bars when
compared with the β’s.

I The plateau values are reached at a smaller ẑ for lower temperatures.

I α2 and β4 have the same sign for finite temperature and for free theory.

I The second highest coefficients α1 and β3 have different sign for free theory and
finite temperatures.

I M̂ ′′R and M̂ ′I also approach the free theory value with increasing temperature.

I M̂ ′′R seem to have a positive value at finite temperatures.
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Conclusion and future work

I We verified the free theory expression for screening correlator derived analytically at
finite isoscalar chemical potential by looking at its derivatives on lattice.

I We derived a new procedure for calculating the screening masses at small finite
chemical potential using symmetry arguments.

I We calculated M̂ ′′R and M̂ ′I at two temperatures.

I To get further accurate values, we need to go to larger lattices and measure at lower
temperature where the noise is larger.

I We need to understand the behaviour at non-zero isovector chemical potential.
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