

Results on global event properties of hadron and ion collisions by the CMS experiment

Gábor Veres Eötvös Loránd University Budapest, Hungary

(c) CERN 2009. All rights reserved

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-08 10:22:07.828203 GMT(11:22:07 CEST Run / Event: 150431 / 541464

Outline

Historical perspective of global analysis

• Charged particle distributions, limiting fragmentation

Selected CMS results on global properties

- Charged particle distributions
- Angular correlations
- Diffraction
- Inelastic cross section
- Charge exchange

Gábor Veres, India+ lectures, 2022

The CMS experiment

Δ

The CMS detector

A single detector combines global characterization and specific probes

- Silicon tracker: pixels and strips ($|\eta|$ <2.4)
- Electromagnetic ($|\eta|$ <3) and hadronic ($|\eta|$ <5) calorimeters
- Muon chambers ($|\eta|$ <2.4)
- Extension with forward detectors (CASTOR 5.3<| η |<6.6, ZDC | η |>8.3)

Gábor Veres, India+ lectures, 2022

The Hadron Forward calorimeter

Gábor Veres, India+ lectures, 2022

What is the energy released in a collision? Are ions (hadrons) transparent? How much? Are baryons stopped in a heavy ion collision? Number and momentum of final state particles? Total, elastic, inelastic cross section, diffraction Correlation between particles Saturation at low x (high rapidities)

Questions about high eta

Gábor Veres, India+ lectures, 2022

Gluon saturation

Saturated initial state gluons

Gábor Veres, India+ lectures, 2022

Kinematics

Gábor Veres, India+ lectures, 2022

Measurements at RHIC (PHOBOS)

Extended longitudinal scaling

Gábor Veres, India+ lectures, 2022

Scaling and saturation

Gábor Veres, India+ lectures, 2022

Longitudinal scaling vs. collision energy

Gábor Veres, India+ lectures, 2022

Centrality dependence: heavy ions

Gábor Veres, India+ lectures, 2022

Predictions/extrapolations to LHC

Central Pb+Pb collisions at LHC energy

Assuming: dN/d η grows \propto log(s) and *linear* scaling at high η holds

Extended longitudinal scaling: v₁

 \Rightarrow These scaling features of the bulk hadron production at high η are unexplained by initial state models alone.

Gábor Veres, India+ lectures, 2022

The first collisions at the LHC: trigger

 23^{th} November, 2009, 19:20:55 CET The first proton-proton collision at the LHC

Gábor Veres, India+ lectures, 2022

The Beam Scintillator Counters (BSC)

Gábor Veres, India+ lectures, 2022

Trigger ideas before the LHC startup

• Random trigger, Level-1

Zero bias: trigger on crossing of filled bunches Optimal for moderate intensity, heavily prescaled

• At least one track in the pixel detector, HLT

Very low bias, optimal for very low intensity running (e.g. 900 GeV) Efficiency: 88% IN, 99% ND, 69% DD, 59% SD at 14 TeV Can be combined with offline vertex trigger

Gábor Veres, India+ lectures, 2022

Trigger plans for minimum bias

• Forward hadron calorimeters, Level-1

- Count towers with $E_T>1$ GeV in the forward calorimeters (HF, 3<| η |<5)
- Require hits on one side: 89% IN efficiency (900 GeV)
- Require hits on both sides: 59% IN efficiency only, but insensitive to beam-gas

Usability of triggers depend on bunch pattern and luminosity

Gábor Veres, India+ lectures, 2022

- Count clusters in the pixel barrel layers, as done in PHOBOS at RHIC
- Use pixel cluster size information to:
 - ... estimate the z position of the interaction vertex
 - \therefore remove hits at high η from non-primary sources
- Correction for loopers, secondaries, expected systematic error below 10%
- No need for tracking and alignment, sensitivity down to $p_{\scriptscriptstyle T}$ of 30 MeV

Pixel detector

3 barrel layers (radii: 4, 7, 10 cm) and 2 endcaps on each side • Hit triplets

Use pixel hit triplets instead of pairs, lower fake track rate modified triplet finding, reconstruction down to $p_T=75$ MeV/c cluster shape must match trajectory direction, very low fake track rate

Tracking optimized for all $\boldsymbol{p}_{\scriptscriptstyle T}$

Gábor Veres, India+ lectures, 2022

p-p @ 14 TeV (Pythia)

Gábor Veres, India+ lectures, 2022

p-p @ 14 TeV (Pythia)

Gábor Veres, India+ lectures, 2022

The first CMS paper: dN/dη distribution

Data taking: 12 and 14 Dec. ($\approx 2 \times 2$ hours), ≈ 10 Hz collisions, no pileup

- Trigger: Beam Scintillator Counters (BSC) AND beam pickups (BPTX)
- Event selection:

>3 GeV total energy on both sides in the Forward Calorimeter (HF) Beam Halo rejection (BSC) Beam background rejection Collision vertex Efficiencies:

NSD:	~86 %
SD:	~19 %
DD:	~34 %

Gábor Veres, India+ lectures, 2022

BSC

Detector performance I.

- The CMS silicon pixel and strip tracker detectors were used
- Pixels: three 53.3 cm long layers with radii 4.4, 7.3, 10.2 cm
- >97% of all channels were operational, hit efficiency optimized

The energy loss in the tracker layers well described by MC

The vertex position distributions are clean Gaussians, with no tails

Detector performance II.

The number of hits in the pixel and strip tracker attached to tracks agrees with MC. The hit reconstruction efficiency is higher than 99%.

Gábor Veres, India+ lectures, 2022

Cluster counting method

- Counting hits (clusters of pixels) in the pixel barrel layers
- Cluster length ~ $|\sinh(\eta)|$
- Shorter clusters are eliminated (loopers, secondaries)
- Corrections for loopers, weak decays, secondaries
- Independent result for all 3 layers
- Immune to detector misalignment
- Sensitive to beam background
- Note: our detector is noise-free!

Pixel cluster length along the beam direction as a function of η . The solid line shows the cut applied.

Tracklet method

- Tracklets: pairs of clusters on different pixel barrel layers
- The $\Delta\eta$ and $\Delta\phi$ correlations are used to separate the signal
- A side-band in Δφ is used to subtract combinatorial background
- Corrections for efficiency, weak decays, secondaries
- Independent result for all 3 layer pairs
- Less sensitive to beam background

The $\Delta\eta$ distribution of the two clusters of the tracklets

Gábor Veres, India+ lectures, 2022

Tracking method

- Uses all pixel and strip layers
- Builds particle trajectories iteratively
- Low fake rate achieved with cleaning based on cluster shapes
- Primary vertex reconstructed from tracks – agglomerative vertexing
- Compatibility with beam spot and primary vertex required
- Immune to background
- More sensitive to beam spot position and detector alignment

JHEP 02 (2010) 041 459 citations

50 d 2 N $_{
m ch}$ / dŋ dp $_{
m T}$ [(GeV/c) 1] |m|=2.3 |**h**|=2.1 40 |ŋ|=1.9 |η|**=1.7** 30 ml=1.5 |n|=1.3 |**h**|=1.1 20 |m|=0.9 |m|=0.7 10 |η|=0.5 |n|=0.3 |η|=0.1 n 0.5 1.5 0 p₊ [GeV/c]

Data 2.36 Te

60

(a)

Differential yield of charged hadrons in the range $|\eta|$ <2.4 The η bins are shifted by four units vertically.

Gábor Veres, India+ lectures, 2022

8th Dec 2022

CMS

Results: p_T-distribution

- The transverse-momentum distribution of charged hadrons was measured up to 4 GeV/c.
- Well described by the Tsallisfunction combining a $low-p_T$ exponential with a high-p_T tail
- With increasing energy, the p_T -spectrum gets "harder" (as expected)
 - Measured yield of charged hadrons for $|\eta| < 2.4$, fit with the Tsallis function.

Results: dN/dη

 $dN_{ch}/d\eta$ distributions obtained from the three methods at 0.9 TeV and 2.36 TeV. The error bars represent systematic uncertainties excluding those common to all the methods.

dN_{ch}/dη distributions alleraged over the three methods and symmetrized in η. The shaded band represents systematic uncertainties. The error bars on the UA5 and ALICE data points are statistical only.

Gábor Veres, India+ lectures, 2022

Results: energy dependence

Collision energy dependence of average transverse momentum.

Charged particle pseudorapidity density as a function of collision energy.

Gábor Veres, India+ lectures, 2022

First 7 TeV paper from CMS

Collision rate \approx 50 Hz "pileup" \approx 0.3% (neglected)

- Trigger: any hit in the Beam Scintillator Counters (BSC, $3.23 < |\eta| < 4.65$) AND a filled bunch passing the beam pickups (BPTX)
- Off-line event selection:

>3 GeV total energy on both sides in the Forward Calorimeter (HF 2.9 < $|\eta|$ < 5.2) Beam Halo rejection (BSC) Dedicated beam background rejection

Collision vertex

55100 events remain after all cuts

Efficiencies:

NSD: ~86 % SD: ~27 % DD: ~34 %

Vertex-cluster compatibility: Ratio of #clusters in the V-shape and #clusters in the V-shape offset by ± 10 cm

Beam-scraping events have a lot of pixel hits but ill-defined vertex

Remaining beam-gas fraction: 2x10⁻⁵

Gábor Veres, India+ lectures, 2022
Estimating diffractive fraction from data

The HF calorimeter data is used to fit the SD+DD fraction in data using PYTHIA event shapes. PHOJET was also studied similarly.

Gábor Veres, India+ lectures, 2022

dE/dx information in the silicon

Excellent agreement with simulations

Gábor Veres, India+ lectures, 2022

Comparison with models

Gábor Veres, India+ lectures, 2022

Observation of single diffractive events

Variable used: $\Sigma(E+p_z) = \Sigma E(1+\cos\theta) = \Sigma(p_Te^\eta)$ The sum runs over the full calorimeter acceptance Events below 5 GeV are mainly single diffractive type: almost no forward energy on the +z side **PYTHIA** describes the ND part better than PHOJET 3000 Fetpz) (GeV¹ dN/d($\sum E+pz$) (GeV⁻) 120 CMS Preliminary 2009 CMS Preliminary 2009 2500 p+p (0.9 TeV) BSC OR and Vertex p+p (2.36 TeV) BSC OR and Vertex 100 Energy scale ±10% Energy scale ±10% PYTHIA D6T PYTHIA D6T 2000 PHOJET PHOJET 80 PYTHIA Non-diffractive PYTHIA Non-diffractive PHOJET Non-diffractive PHOJET Non-diffractive 1500 0.9 TeV 60 2.36 Te\ 1000 40 500 20 0 10 10′ 10 10^{2} ∑(E+pz) (GeV) \sum (E+pz) (GeV) Uncorrected distributions

Gábor Veres, India+ lectures, 2022

Observation of single diffractive events

Enhancing SD events: E_{HF-}<8 GeV was required (LRG over HF-) **PHOJET** agrees better with the data (for high-mass SD)

Gábor Veres, India+ lectures, 2022

Heavy ions

Gábor Veres, India+ lectures, 2022

Transverse energy density

PRL 109 (2012) 152303

 η -coverage: with the HF calorimeter

Related to the large energy density created in the collision Huge increase as a function of \sqrt{s}

Gábor Veres, India+ lectures, 2022

Energy release: measured up to high $|\eta|$

R_{PC} PbPb, \s_=2.76TeV 0.9 0.8 0.7 0.6 -6.60 < η < -5.19 0.5 -4.89 < η < -4.54 $-0.35 < \eta < 0.35$ 0.4 100 200 300 400 part • At high $|\eta|$ values the ratio of the energies measured in central and *peripheral* collisions is closer to 1 than at midrapidity

CMS PAS HIN-12-006

Gábor Veres, India+ lectures, 2022

8th Dec 2022

CMS PRELIMINARY

Elliptic flow

Gábor Veres, India+ lectures, 2022

Higher order Fourier components

Jet reconstruction in heavy ion events?

Early idea from the Technical Design Report for Heavy Ions:

1. Subtract average pileup

2. Find jets with iterative cone

algorithm

- **3.** Recalculate pileup outside the cone
- 4. Recalculate jet energy

First heavy ion collisions: jet energy loss

890 citations

48

Gábor Veres, India+ lectures, 2022

First discovery at the LHC: correlations

(d) CMS N \geq 110, 1.0GeV/c<p_<3.0GeV/c

JHEP 1009 (2010) 091

1081 citations

Gábor Veres, India+ lectures, 2022

CMS tracker: excellent for correlations

Coverage up to $|\eta| < 2.5$; extremely high granularity, to keep low occupancy (~ a few%) also at LHC nominal luminosity.

Largest Silicon Tracker ever built: Strips: 9.3M channels; Pixels: 66M channels. Operational fractions: strips 98.1%; pixel 98.3%

Gábor Veres, India+ lectures, 2022

Correlation function definition

Gábor Veres, India+ lectures, 2022

Gábor Veres, India+ lectures, 2022

Gábor Veres, India+ lectures, 2022

Gábor Veres, India+ lectures, 2022

Gábor Veres, India+ lectures, 2022

Correlations in minimum bias pp

Pythia D6T

High multiplicity events

268 reconstructed particles in the tracker in a single pp collision: the highest multiplicity event in \sim 70 billion inelastic events sampled (1/pb)

Gábor Veres, India+ lectures, 2022

Extremely high multiplicities

These correlation studies focus on the tail of the distribution, where various MC generators severely under-estimate the data (an exception: PYTHIA8).

Motivations:

 → Trying to find (more) unexpected effects in this regime
→ Learn more about (soft) QCD and particle production mechanisms with more differential measurements
→ Highest multiplicities in pp begin to approach those in ion collisions; can we learn something about similarities or differences?

Gábor Veres, India+ lectures, 2022

High multiplicity trigger

Dedicated trigger was needed to record highest multiplicities

Gábor Veres, India+ lectures, 2022

High multiplicity event statistics

for full 980nb⁻¹

Gábor Veres, India+ lectures, 2022

Results, inclusive p_{T}

Jet peak/away-side correlations enhanced in high multiplicity events Abundant jet production in high multiplicity sample

Gábor Veres, India+ lectures, 2022

Results, inclusive p_{T}

high multiplicity (N>110) **MinBias** (c) N>110, p_>0.1GeV/c (a) MinBias, p₁>0.1GeV/c **R**(Δη,Δφ) **R**(Δη,Δφ) -2

After cuting off the jet peak at (0,0) we can observe: Structure of away-side ridge (back-to-back jets) Small change for large $\Delta\eta$ around $\Delta\phi \sim 0$?

Gábor Veres, India+ lectures, 2022

Results: $1 < p_T < 3$ GeV

Gábor Veres, India+ lectures, 2022

Illustration of the effect

Particles surfacing in the same *time zone*, but far away in latitude, *talk to* each other...

...What mechanism is

the "telephone line"?

Gábor Veres, India+ lectures, 2022

Correlations in PYTHIA8

No $\Delta \phi \sim 0$ structure at large $\Delta \eta \rightarrow$ Same for Herwig++, madgraph, PYTHIA6

Gábor Veres, India+ lectures, 2022

Multiplicity and p_r-dependence

Quantifying the associated yield

Gábor Veres, India+ lectures, 2022

Like-sign and unlike-sign pairs

No dependence on relative charge sign

Gábor Veres, India+ lectures, 2022

Inelastic cross section of p+Pb

- Events tagged using the HF calorimeters: double-sided and one-sided condition
- Contribution from photon-induced events
- Possible coherence and correlation effects (Glauber)
- Cosmic rays: important for proton-air xsec

Event counting

Gábor Veres, India+ lectures, 2022

Corrections

- Noise from non-colliding triggers (5.4 and 0.5% for single- and double-arm selections)
- Contribution from yp (3.4 and 0.02%)
- Pileup (1.8%)
- Extrapolation to full phase space (9 and 6%)
- Electromagnetic processes from STARLIGHT Pb Pb

Gábor Veres, India+ lectures, 2022

Results

Visible cross section: σ_{vis} , all processes that pass selection cuts **Visible hadronic** cross section: $\sigma_{vis,had}$, electromagnetic events subtracted from σ_{vis} **Hadronic inelastic** cross section: σ_{inel} , the visible hadronic xsec extrapolated to full phase space **Systematic uncertainties:** luminosity (3.5%), extrapolation to full phase space (0.5% and 1.6%), photo-nuclear contribution (0.2% and <0.1%), HF energy resolution (1.7% and 0.8%), selection cuts (0.6% and 0.2%) and variations of noise correction (1.2% and 0.2%), in total: 4.4% for both selections

Selection	$\sigma_{\rm vis}$ (b)	$\sigma_{\rm vis,had}$ (b)	$\sigma_{\rm inel}$ (b)
$E_{\rm HF} > 8 {\rm GeV} ({\rm single-arm})$	2.003	1.938	2.063
$E_{\rm HF} > 4 {\rm GeV}$ (double-arm)	1.873	1.873	2.059

Averaged result: σ_{inel}= 2.061 ± 0.003 (stat.) ± 0.039 (syst.) ± 0.072 (lumi.) barns

Phys.Lett.B 759 (2016)

Results

Gábor Veres, India+ lectures, 2022

Charge exchange... the muon puzzle

- Measurements of ultra high energy cosmic rays (eg. at Pierre Auger Observatory)
- Muon component / shower not reproduced by simulations

 \rightarrow could this be measured in the laboratory (at LHC energies)?

See whether simulations predict measured data well ^{2/20}

Gábor Veres, India+ lectures, 2022

Charge exchange and ZDC

Gábor Veres, India+ lectures, 2022

Energy distribution in the ZDC (MC)

- Selection of a charge-exchange-enhanced event sample using the ZDC
- **Measurement of global event features:**
- Charged pions (charged particles), η and p_{τ} distributions
- Effectively, these are pion-proton collisions, very common in cosmic ray air showers
- Muons in the showers: from charged pion decays

Top cited papers from CMS

Top cited CMS physics papers (excluding technical and tuning papers):

- 1) Higgs discovery
- 2) Higgs mass (with ATLAS)
- 3) Higgs decay rates and couplings (with ATLAS)
- 4) Higgs at 7 and 8 TeV
- 5) Two-particle correlations in p+p (ridge)
- 6) Higgs mass and couplings
- 7) Higgs searches
- 8) Jet quenching in Pb+Pb
- 9) Two-particle correlations in p+Pb (ridge)
- **10) Higgs** properties in the 4-lepton final state

Summary

- Global event features are important basic quantities
- Often have deep physical relevance
- These measurements attract a lot of interest
- They have applications in various other fields
- Future is still interesting for global event properties!

THANK YOU FOR YOUR ATTENTION!

Gábor Veres, India+ lectures, 2022