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Outline

e State-of-the-art classical methods (tensor networks)
 Why quantum computation?

« Definitions: qubits, qudits, and qumodes

* Quantum gates with QISKIT demonstration

 Variational Quantum Eigensolver (VQE) for anharmonic oscillator and study of O(3) non-
linear sigma model with qubits.

e Time evolution circuits with quantum gates
* Another facet of QC: Qumodes! Example for Bose-Hubbard model

e Conclusions



Tensor Networks

, Hamiltonian version: Approximate the ground state i.e., | y) = Z C; ..;.lip, - iy) Of

a model with local Hamiltonian of NV spins in fewer coefficients than 2N O(N).

e Lagrangian version: Approximate the partition function using tensor networks
considering decomposition of Boltzmann weight (truncate if necessary) and then
coarse-graining by performing successive iterations using singular-value-

decomposition (SVD).



Why tensors?

* Provides an arena to study lower-dimensional (critical and gapped) systems
faster than any other known method available today! [2d Ising model in 10
seconds on laptop at some fixed temperature]

* Formulation in terms of tensors can help us study models where the usual

Monte Carlo (MC) methods fail (such as finite-density, 8-term). In addition,
the thermodynamic limit can be approached faster and partition function can
be computed unlike MC.

* Description of a quantum state in terms of tensors (MPS) can be useful to
study real-time dynamics

* Known to play a key role in emergence of space-time via proposals like
AdS/MERA etc.



Matrix Product States (MPS)
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Ising Model

* Reproduce the interesting Physics in less than a minute of computer time
using tensor methods. Find code if interested here: https://qgithub.com/rgjha
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https://github.com/rgjha

Scalability is a problem!

* Higher-dimensions are harder. Less progress. There is no known (classical) efficient idea
similar to MPS in 3+1 dimensions. Time evolution of QFTs (almost impossible) to study
In these cases.

 MPS can only faithfully represent ground state of local Hamiltonians for 1d quantum
systems.

 Go back to quote by Feynman, 1982. ‘Nature is qguantum-mechanical, we cannot
simulate it classically in an efficient manner’.



Quantum Computation

Quantum Mechanical Computers

By Richard P. Feynman

Introduction

his work is a part of an effort to
I analyze the physical limitations
of computers due to the laws of
physics. For example, Bennett! has
made a careful study of the free energy
dissipation that must accompany com-
putation. He found it to be virtually
zero. He suggested to me the question
of the limitations due to quantum me-
chanics and the uncertainty principle. I
have found that, aside from the obvious
lirnitation to size if the working parts
are to be made of atoms, there is no
fundamental limit from these sources
either.

We are here considering ideal ma-
chines; the effects of small imperfec-
tions will be considered later. This study
is one of principle; our aim is to exhibit
some Hamiltonian for a system which
could serve as a computer. We are not
concerned with whether we have the
most efficient system, nor how we
could best implement it.

Since the laws of quantum physics
are reversible in time, we shall have to
consider computing engines which
obey such reversible laws. This prob-
lem already occurred to Bennett!, and
to Fredkin and Toffoli2, and a great deal
of thought has been given to it. Since it
may not be familiar to you here, I shall
review this, and in doing so, take the
opportunity to review, very briefly, the
conclusions of Bennett?, for we shall
confirm them all when we analyze our
quantum system.

It is a result of computer science that
a universal computer can be made by a
suitably complex network of intercon-
nected primitive elements. Following
the usual classical analysis we can imag-
ine the interconnections to be ideal
wires carrying one of two standard volt-
ages representing the local 1 and 0. We
can take the primitive elements to be
just two, NOT and AND (actually just
the one element NAND = NOT AND
suffices, for if one input is set at 1 the
output is the NOT of the other input).
They are symbolized in Fig. 1, with the
logical values resulting on the outgoing
wires, resulting from different com-
binations of input wires.

From a logical point of view, we must
consider the wires in detail, for in other
systems, and our quantum system in
particular, we may not have wires as

OPTICS NEWS

such. We see we really have two more
logical primitives, FAN OUT when two
wires are connected to one, and EX-
CHANGE, when wires are crossed. In
the usual computer the NOT and NAND
primitives are implemented by transis-
tors, possibly as in Fig. 2.

What is the minimum free energy that
must be expended to operate an ideal
computer made of such primitives?
Since, for cxample, when the AND op-
erates the output line, ¢”is being deter-
mined to be one of two values no matter
what it was before the entropy change is
In(2) units. This represents a heat gen-
eration of kT In(2) at temperature T. For
many years it was thought that this rep-
resented an absolute minimum to the
quantity of heat per primitive step that
had to be dissipated in making a cal-
culation. )

The question is academic at this time.
In actual machines we are quite con-
cerned with the heat dissipation ques-
tion, but the transistor system used ac-
tually dissipates about 10'°%T! As
Bennett® has pointed out, this arises
because to change a wire’s voltage we
dump it to ground through a resistance;
and to build it up again we feed charge,
again through a resistance, to the wire.
It could be greatly reduced if energy

Richard P. Feynman is a profes-
sor of theoretical physics at Cali-
fornia Institute of Technology.
This article is based on his ple-
nary talk presented at the CLEO/
IQEC Meeting in 1984.
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could be stored in an inductance, or
other reactive element.

However, it is apparently very diffi-
cult to make inductive elements on sili-
con wafers with present techniques.
Even Nature, in her DNA copying ma-
chine, dissipates about 100 k7T per bit
copied. Being, at present, so very far
from this kT In(2) figure, it seems ridic-
ulous to argue that even this is too high
and the minimum is really essentially
zero. But, we are going to be even more
ridiculous later and consider bits writ-
ten on one atom instead of the present
10" atoms. Such nonsense is very en-
tertaining to professors like me. I hope
you will find it interesting and enter-
taining also.

What Bennett pointed out was that
this former limit was wrong because it
is not necessary to use irreversible
primitives. Calculations can be done
with reversible machines containing
only reversible primitives. If this is done
the minimum free energy required is
independent of the complexity or num-
ber of logical steps in the calculation. If
anything, it is kT per bit of the output
answer.

But even this, which might be consid-
ered the free energy needed to clear the
computer for further use, might also.be
considered as part of what you are go-
ing to do with the answer—the informa-
tion in the result if you transmit it to
another point. This is a limit only
achieved ideally il you compute with a
reversible computer at infinitesimal
speed.

Computation with a
reversible machine

We will now describe three reversible
primitives that could be used to make a
universal machine (Toffoli*). The first is
the NOT which evidently loses no in-
formation, and is reversible, being re-
versed by acting again with NOT. Be-
cause the conventional symbol is not
symmetrical we shall use an X on the
wire instead (see Fig. 3a).

Next is what we shall call the CON-
TROLLED NOT (see Fig. 3b). There are
two entering lines, @ and b and two
exiting lines, a”and b7 The a’is always
the same as a, which is the control line.
If the control is activated @ = 1 then the
out b’ is the NOT of b. Otherwise b is
unchanged, b’ = b. The table of values

11



Approaches

 Digital quantum computing: Use qubits to perform computations.
There are three steps in general: 1) Initial state-preparation, 2)
Implementing unitary evolution using quantum gates, 3) Measurements.

« Continuous quantum computing: Use of continuous variables (local
Hilbert space is strictly infinite-dimensional like say harmonic oscillator)
to carry out state preparation, time evolution, and measurements




States

* Qubits:d =2, [0),|1)
e Qudits:d > 2, say |y)=al|0)+p/|1)+7]|2)

e Qumodes: d = ©




Quantum gates (unitary!)
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Classical vs. Quantum
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Other gates

Operator Gate(s) Matrix
. | - 0 1
Pauli-X (X) X —B- i
Pauli-Y (Y) —Y [~ i
Pauli-Z (Z) —Z [(1) _(1)]
Hadamard (H) —H— % [} —i]
— - 1 0
Phase (S, P) S 5 9
T — T 1 0
7 /8 (T) 0 ein/a
1 0 0 O
Controlled Not 0 1 0 0
(CNOT, CX) $ 00 Y
1 0 O 0
Controlled Z (CZ) [8 5 5 g]
—1Z 0 0 0 -1
RV 1 0 0 0
>< 0O 0 1 O
SWAP !O 1 O 0]
- 0O 0 0 1
1 0 0 0 0 0 0 0
Toffoli 6 o 1 0 0 0 0 0
(CCNOT, o 0 00 10 0 0
CCX, TOFF) 6 0 0 0 0 o o 1
0 0 0 0 0 0 1 0




QISKIT implementation

* Open-source SDK developed by IBM which acts as a simulator. Think of this
as how airline pilots train in a simulator before real flights. The programs can
be sent to IBM devices if you have an account. For learning purposes,
QISKIT is good enough.

 You can install on your laptop and play around. | will show you some
examples. Many working codes can be found in the arXiv article.



Bell state: Measure

= QuantumCircuit(2,2)

gc.measure(0,0)
gc.measure(1l,1)

counts = execute(qc, Aer.get backend( 'gasm simulator'),
shots=1024) .result().get counts()
plot histogram(counts)




Bell state cont.

gc = QuantumCircuit(4,2)




Example: GHZ state [«oo0) + 1111y4/2]

giskit import *
giskit.quantum info import *
giskit.visualization import *

= QuantumCircuit(gn)

Statevector.from instruction(circ)
display(array to latex(ghz, prefix="\\text{Statevector} = "))




Visualize!

qubit 0 qubit 1
10 10

A random two-qubit state



Quantum Algorithms

« One of the most popular algorithms in the NISQ-era is the variational quantum
eigensolver (VQE). This is actually a hybrid quantum/classical algorithm.

* The steps are:
1. Prepare initial state on QC i.e., |0)
2. Obtain good ansatz by acting with some U(®)i.e., |y) = U|0)

3. Measure energy on QC and optimise the parameters ® using classical optimisers

4. Repeat until convergence.



VQE representation

Qubit Hamiltonian A
Choice of ansatz
Initial parameters 90

New set of 0 values

v v

Energy Evaluation

Parametrized

quantum circuit

Classical Optimizer

A

Repeat until
convergence

to obtain

ming E(0)

State
preparation

Expectation ‘
estimation
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VQE continued ..

. We can write the Hamiltonian as a 2" X 2" matrix using a,a'. Then using the fact that
every such matrix can be written entirely in terms of X, Y, Z, |, we decompose it in Pauli
strings [strings of Paulis]. This method has been extensively used to study various
molecules in quantum chemistry like H,, BeH, etc.

PIENSICAL RIBVIEU S

Highlights Recent Subjects Accepted Collections Authors RECIEES Search Press About Editorial Team N

Scalable Quantum Simulation of Molecular Energies 151)
P.J.J. O'Malley et al.

Phys. Rev. X 6, 031007 — Published 18 July 2016
< More
Article References Citing Articles (464) m

« With some fixed coupling of cubic term, we get our AHO Hamiltonian as:

H' =415 — 0.15295614X — 0.51,Z — 0.12289 * 1X X — 0.06299481YY — 1171 + 0.02376271Z X — 0.0280252X 1.X
— 0.0561195X X X + 0.0287333XYY + 0.0107047X ZX — 0.0280252Y1Y — 0.0287333Y XY — 0.0561195YY X
+ 0.0107047Y ZY — 2Z14 4 0.0872346Z1 X + 0.0842295ZX X + 0.041655ZYY + 0.0207442ZZ X



Anharmonic oscillator - Set up

giskit.algorithms import VQE
giskit.opflow import MatrixOp
giskit.opflow import X, Y, Z, I
giskit.algorithms.optimizers import SLSQP
giskit.algorithms.optimizers import COBYLZ
giskit.circuit.library import EfficientSU2

giskit.utils import algorithm globals, QuantumInstance
giskit.visualization.array import array to latex

Hps = (4 * I ~ I "~ I)+(-0.152955 * I ~ I ~ X)+(-0.5 * I ~ I " Z)+(-0.12289 * I ~ X *
X)+(-0.0629948 * I ~ Y ~ Y)+(-1 * I ~ 2 ~ I)+(0.0237627 * I ~ Z ~ X)+(-0.0280252 * X ~ I
A X)+(-0.0561195 * X ~ X ~ X)+(0.0287333 * X ~ Y * Y)+(0.0107047 * X ~ Z " X)+(-0.0280252
* Y ~ I " Y)+(-0.0287333 * Y ~ X "~ Y)+(-0.0561195 * Y *~ Y ~ X)+(0.0107047 * ¥ ~ z *
Y)+(-2 * 2 ~ I ~ I)+(0.0872346 * Z ~ I ~ X)+(0.0842295 * Z "~ X ~ X)+(0.041655 * Z ~ Yy "
Y)+(0.0207442 * 7 ~ 7 " X)




Anharmonic oscillator

start time = time.time()
nbits =3
var form = EfficientSU2(nbits, su2 gates=['ry'], entanglement="full", reps=1)
rngseed = 5
arnings.filterwarnings("ignore")
backend = Aer.get backend("statevector simulator")
q _instance = QuantumInstance(backend, seed transpiler=rngseed,
seed simulator=rngseed)

optimizer = COBYLA(maxiter=600)

= VQE (ansatz=var form,optimizer=optimizer,quantum instance=q instance)
vge.compute minimum eigenvalue (Hps)
result = np.real(ret.eigenvalue)
("VQE Result:", vge result)
0.5 - (11/8)*g*g —-(465/32)*g*g*g*g
print ("Exact result for cubic oscillator upto 0(g™4) is", exact)
print ("Error is", np.round(abs((exact-vge result)/exact)*100,10), "percent")
end time = time.time()
runtime = end time-start time

print( 'Program runtime: ',runtime, "seconds")



O(3) model in 1+1

arXiv: 2210.03679 [quant-ph]

. The Hamiltonian is given by (8 = 1/g?):
H = Z —p Z n; - Nj,
(.])

 \We can construct this matrix for some fixed value of lmaX

The Hamiltonian for a N-site latticeisa (I, + 1)* x (L., + 1)*" matrix. We can

consider model with or without a f-term. As we saw before, we need to express the H in
terms of qubits which is often done use Jordan-Wigner or Bravyi-Kitaev transformations.



2210.03679 [quant-ph]

O(3) model
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Results

* At the moment, VQE is at times, no better than exact diagonalization. But,
there are various improvements and it will improve in future.

2 "7 —%— QMPS
3.7300 1 —¥— Q-S2D
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Time evolution of quantum systems

One of the problems where theoretical physicists would like to apply QC is to
understand the time-evolution of some complicated quantum many-body

system. Suppose, we have spin-1/2 particle each on two sites with some H

below, we would need two qubits to initialise the state say, |00). Now
suppose the 4x4 Hamiltonian of this two-site model is given by:

H=X®X)+(Y®Y)

We want to do time evolution of this system i.e., exp(—iHt). We have to
represent this unitary operator with quantum (unitary) gates.



Time evolution of quantum systems

« Note that we have to keep dt sufficiently small, so we have to repeat
the circuit below N times where N = t/dt. As we can see, we need

about 8V unitary gates (4 one-qubit, and 4 two-qubit) for this simple
Hamiltonian and two sites!

o H-—eo—R,(—a)—e—H|—o

A
1/
A
1/
A\
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Basic idea




Simple demonstration

Now since we see that we are happy with the circuit. Let’s measure!

circ.measure(0,0)
circ.measure(l,1)

counts = execute(circ, Aer.get backend('gasm simulator'),
shots=1024) .result().get counts()
plot histogram(counts)




Using qumodes

* As mentioned before, there are other ways to approach quantum computing
not just 2-state (or qubit) methods. We can also use a quantum mechanical
HO. There are now simulators for gumodes (or continuous variables as well)
like Bosonic QISKIT, Strawberry Fields etc.

CcVv Qubit

Basic element Qumodes Qubits

Quadrature operators Z, p

Relevant : Al
: Pauli operators 6, 0y, 7,

ittt Mode operators g, &'
Coherent states |a)

Common = .
Squeezed states |z) Pauli eigenstates [0/1) , |£) , |£2)

states

Number states |n)

Common Rotation, Displacement, Squeezing,

e e e (O el e Phase Shift, Hadamard, CNOT, T Gate



Bose Hubbard Model with CVs
(arXiv:1801.06565)

 For fermionic systems, like Ising model, the qubit approach is generally preferred but for
models with bosonic degrees of freedom (where the local Hilbert space dimension is infinite),
the more natural setting is one of oscillator (Qqumodes). Suppose, we consider the famous

Bose-Hubbard model where the H is given by:
1 NN
where we have used create /annihilation operators and the number operators. The first term

denotes the hopping of bosons between neighbouring sites and second term is the on-site
potential term.



Two-site model
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. We can write the time-evolution operator as:

= [BS (0,¢) (K(NR(-r) ® K(r)R(—r))]N + O (£*/N) ;
0 = —JtIN,§p = n/2, r = — Ut/2N

where BS is the beam-splitter gate, K is the Kerr gate (non-Gaussian), and R is the rotation gate. These

gates are qumodes equivalent of the qubit gates we saw before. For example, K(k) = exp(ikﬁz).

Constructing these gates are major undertaking in quantum photonics labs where the photon is
modelled as an oscillator.



Time evolution

* Two steps of evolution can be achieved by the following circuit.

BS BS

e Let’'s try it out using Xanadu’s Strawberry Fields photonics
simulator.



import numpy as np
np.random.seed(11)

import strawberryfields as sf

from strawberryfields.ops import *

ham simulation = sf.Program(2)

J =1

U = 1.5

k = 30

t 0.0

theta = -J*t/k
~U*t/(2*k)

ith ham simulation.context as q:

for i in range(k):
BSgate(theta, np.pi/2) (q[0],
Kgate(r)
Rgate(-r)

all])

(
Kgate(r)
Rgate(-r)

("P(|0, 2>) = ", state.fock prob([0, 21))
("P(|1, 1>) = ", state.fock prob([l, 11))
", state.fock prob([2, 0]))

result = [state.fock prob([0,2]), state.fock prob([1l, 1]), 01)1

print(np.sum(result))

state.fock prob([2,




Conclusions

« We are entering a new era (similar to lattice gauge theories on classical
computers in the 1970s) where as quantum computers become more
capable, we can start solving ‘some’ problems not possible with current
computers. However, this is not anytime soon. Since, QM is quite restrictive
unlike classical computing, the progress might not be smooth.

* For now, VQE+variants is sort of state-of-the-art. This will improve in coming
decade with more qubits (with error-correction) and better algorithms.












Backup: Holevo bound

Consequently, although a quantum state of n qubits can be thought to represent a large amount of information, in the sense
that the state is specified by 2*n -1 complex numbers, in fact, such a state can communicate at most n bits of decodable
information

41
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