
 Raghav G. Jha
 Jefferson Lab

 Quantum and Classical Computing for
 Quantum Many-Body Systems

1

 Talk available online: rgjha.github.io/talks/TIFR.pdf

http://rgjha.github.io/talks/TIFR270423.pdf

• State-of-the-art classical methods (tensor networks)

• Why quantum computation?

• Definitions: qubits, qudits, and qumodes

• Quantum gates with QISKIT demonstration

• Variational Quantum Eigensolver (VQE) for anharmonic oscillator and study of O(3) non-
linear sigma model with qubits.

• Time evolution circuits with quantum gates

• Another facet of QC: Qumodes! Example for Bose-Hubbard model

• Conclusions

Outline

3

• Hamiltonian version: Approximate the ground state i.e., = of

a model with local Hamiltonian of spins in fewer coefficients than , O(N). 

• Lagrangian version: Approximate the partition function using tensor networks
considering decomposition of Boltzmann weight (truncate if necessary) and then
coarse-graining by performing successive iterations using singular-value-
decomposition (SVD).

|ψ⟩ ∑
i1,⋯,iN

Ci1,⋯,iN | i1, ⋯, iN⟩

N 2N

Tensor Networks

4

• Provides an arena to study lower-dimensional (critical and gapped) systems
faster than any other known method available today! [2d Ising model in 10
seconds on laptop at some fixed temperature]

• Formulation in terms of tensors can help us study models where the usual
Monte Carlo (MC) methods fail (such as finite-density, -term). In addition,
the thermodynamic limit can be approached faster and partition function can
be computed unlike MC.

• Description of a quantum state in terms of tensors (MPS) can be useful to
study real-time dynamics

• Known to play a key role in emergence of space-time via proposals like
AdS/MERA etc.

θ

Why tensors?

5

Matrix Product States (MPS)

6

• Reproduce the interesting Physics in less than a minute of computer time
using tensor methods. Find code if interested here: https://github.com/rgjha 
 
 

Ising Model

7

https://github.com/rgjha

• Higher-dimensions are harder. Less progress. There is no known (classical) efficient idea
similar to MPS in 3+1 dimensions. Time evolution of QFTs (almost impossible) to study
in these cases.

• MPS can only faithfully represent ground state of local Hamiltonians for 1d quantum
systems.

• Go back to quote by Feynman, 1982. ‘Nature is quantum-mechanical, we cannot
simulate it classically in an efficient manner’.

Scalability is a problem!

8

Quantum Computation

9

• Digital quantum computing: Use qubits to perform computations.
There are three steps in general: 1) Initial state-preparation, 2)
Implementing unitary evolution using quantum gates, 3) Measurements.

• Continuous quantum computing: Use of continuous variables (local
Hilbert space is strictly infinite-dimensional like say harmonic oscillator)
to carry out state preparation, time evolution, and measurements

Approaches

• Qubits:

• Qudits:

• Qumodes:

d = 2, |0⟩, |1⟩

d > 2, say |ψ⟩ = α |0⟩ + β |1⟩ + γ |2⟩

d = ∞

States

Quantum gates (unitary!)

| + ⟩ =
1

2 (|0⟩ + |1⟩)

Classical vs. Quantum

CNOT gate
Classical: Boolean Algebra

(aka
 CX gate)

 CX = |0⟩⟨0 | ⊗ I + |1⟩⟨1 | ⊗ X CZ = |0⟩⟨0 | ⊗ I + |1⟩⟨1 | ⊗ Z

Other gates

• Open-source SDK developed by IBM which acts as a simulator. Think of this
as how airline pilots train in a simulator before real flights. The programs can
be sent to IBM devices if you have an account. For learning purposes,
QISKIT is good enough.

• You can install on your laptop and play around. I will show you some
examples. Many working codes can be found in the arXiv article.

QISKIT implementation

#!pip install qiskit ipywidgets
Creating a circuit with 4 quantum bits and 2 classical bits
qc = QuantumCircuit(2,2)

qc.h(0)
qc.cx(0,1)
qc.draw()

qc.measure(0,0)
qc.measure(1,1)

counts = execute(qc, Aer.get_backend('qasm_simulator'),
shots=1024).result().get_counts()
plot_histogram(counts)

Bell state: Measure

Creating a circuit with 4 quantum bits and 2 classical bits
qc = QuantumCircuit(4,2)

qc.h(0)
qc.cx(0,1)
qc.draw()
To Bell State: Hadamard followed by CNOT

Bell state cont.

We will now construct GHZ state
from qiskit import *
from qiskit.quantum_info import *
from qiskit.visualization import *
qn = 3 # three-qubit GHZ

circ = QuantumCircuit(qn)
circ.h(0)
circ.cx(0, 1)
circ.cx(0, 2)
circ.draw()

ghz = Statevector.from_instruction(circ)
display(array_to_latex(ghz, prefix="\\text{Statevector} = "))

Example: GHZ state [](|000⟩ + |111⟩)/ 2

Visualize!

A random two-qubit state

• One of the most popular algorithms in the NISQ-era is the variational quantum
eigensolver (VQE). This is actually a hybrid quantum/classical algorithm.

• The steps are: 
 
1. Prepare initial state on QC i.e.,  
 
2. Obtain good ansatz by acting with some i.e.,  
 
3. Measure energy on QC and optimise the parameters using classical optimisers  
 
4. Repeat until convergence.

|0⟩

U(Θ) |ψ⟩ = U |0⟩

Θ

Quantum Algorithms

VQE representation

• We can write the Hamiltonian as a matrix using . Then using the fact that
every such matrix can be written entirely in terms of X, Y, Z, I, we decompose it in Pauli
strings [strings of Paulis]. This method has been extensively used to study various
molecules in quantum chemistry like etc.

• With some fixed coupling of cubic term, we get our AHO Hamiltonian as:  
 
 

2n × 2n a, a†

H2, BeH2

VQE continued ..

import numpy as np
import math
import time
import warnings
import itertools
from qiskit import Aer
from qiskit.algorithms import VQE
from qiskit.opflow import MatrixOp
from qiskit.opflow import X, Y, Z, I
from qiskit.algorithms.optimizers import SLSQP
from qiskit.algorithms.optimizers import COBYLA
from qiskit.circuit.library import EfficientSU2
from qiskit.utils import algorithm_globals, QuantumInstance
from qiskit.visualization.array import array_to_latex

Hps = (4 * I ^ I ^ I)+(-0.152955 * I ^ I ^ X)+(-0.5 * I ^ I ^ Z)+(-0.12289 * I ^ X ^
 X)+(-0.0629948 * I ^ Y ^ Y)+(-1 * I ^ Z ^ I)+(0.0237627 * I ^ Z ^ X)+(-0.0280252 * X ^ I
 ^ X)+(-0.0561195 * X ^ X ^ X)+(0.0287333 * X ^ Y ^ Y)+(0.0107047 * X ^ Z ^ X)+(-0.0280252
 * Y ^ I ^ Y)+(-0.0287333 * Y ^ X ^ Y)+(-0.0561195 * Y ^ Y ^ X)+(0.0107047 * Y ^ Z ^
 Y)+(-2 * Z ^ I ^ I)+(0.0872346 * Z ^ I ^ X)+(0.0842295 * Z ^ X ^ X)+(0.041655 * Z ^ Y ^
 Y)+(0.0207442 * Z ^ Z ^ X)

•

Anharmonic oscillator - Set up

start_time = time.time()
nbits =3
var_form = EfficientSU2(nbits, su2_gates=['ry'], entanglement="full", reps=1)
rngseed = 5
warnings.filterwarnings("ignore")
backend = Aer.get_backend("statevector_simulator")
q_instance = QuantumInstance(backend, seed_transpiler=rngseed,
seed_simulator=rngseed)
#optimizer = SLSQP(maxiter=600)
optimizer = COBYLA(maxiter=600)

Run the VQE
vqe = VQE(ansatz=var_form,optimizer=optimizer,quantum_instance=q_instance)
ret = vqe.compute_minimum_eigenvalue(Hps)
vqe_result = np.real(ret.eigenvalue)
print("VQE Result:", vqe_result)
exact = 0.5 - (11/8)*g*g -(465/32)*g*g*g*g
print ("Exact result for cubic oscillator upto O(g^4) is", exact)
print ("Error is", np.round(abs((exact-vqe_result)/exact)*100,10), "percent")
end_time = time.time()
runtime = end_time-start_time
print('Program runtime: ',runtime, "seconds")
•

Anharmonic oscillator

• The Hamiltonian is given by () : 
 

• We can construct this matrix for some fixed value of  
 
The Hamiltonian for a -site lattice is a matrix. We can
consider model with or without a -term. As we saw before, we need to express the H in
terms of qubits which is often done use Jordan-Wigner or Bravyi-Kitaev transformations.

β = 1/g2

Ĥ =
1

2β ∑
i

L2
i − β∑

⟨i,j⟩

ni ⋅ nj,

lmax.

N (lmax. + 1)2N × (lmax. + 1)2N

θ

arXiv: 2210.03679 [quant-ph]

O(3) model in 1+1

arXiv: 2210.03679 [quant-ph]

O(3) model

• At the moment, VQE is at times, no better than exact diagonalization. But,
there are various improvements and it will improve in future.

Results

β = 0.1 β = 10

• One of the problems where theoretical physicists would like to apply QC is to
understand the time-evolution of some complicated quantum many-body
system. Suppose, we have spin-1/2 particle each on two sites with some
below, we would need two qubits to initialise the state say, . Now
suppose the 4x4 Hamiltonian of this two-site model is given by:  
 
  
 
 
We want to do time evolution of this system i.e., . We have to
represent this unitary operator with quantum (unitary) gates.

H
|00⟩

H = (X ⊗ X) + (Y ⊗ Y)

exp(−iHt)

Time evolution of quantum systems

• Note that we have to keep sufficiently small, so we have to repeat
the circuit below times where . As we can see, we need
about unitary gates (4 one-qubit, and 4 two-qubit) for this simple
Hamiltonian and two sites! 
 

  
 

dt
N N = t/dt

8N

Time evolution of quantum systems

Basic idea

F
.

°
.
.

§
°
.
.

6

!

g
m

P

t
×

4

"

④
N

#

"

×
④

%
t

N

I
I

t

N
N

11

⇒
I
1

÷
#
¥
.

I
1

#

11
11

9
9

I

#

T

' I

#

i

#

7.

I
/

!

" "

N

Simple demonstration

circ = QuantumCircuit(2,2)
t = 0.1
circ.h(0)
circ.h(1)
circ.cx(0,1)
circ.rz(t,1)
circ.cx(0,1)
circ.h(0)
circ.h(1)
circ.draw()

Now since we see that we are happy with the circuit. Let’s measure!

circ.measure(0,0)
circ.measure(1,1)

counts = execute(circ, Aer.get_backend('qasm_simulator'),
shots=1024).result().get_counts()
plot_histogram(counts)

• As mentioned before, there are other ways to approach quantum computing
not just 2-state (or qubit) methods. We can also use a quantum mechanical
HO. There are now simulators for qumodes (or continuous variables as well)
like Bosonic QISKIT, Strawberry Fields etc.

Using qumodes

• For fermionic systems, like Ising model, the qubit approach is generally preferred but for
models with bosonic degrees of freedom (where the local Hilbert space dimension is infinite),
the more natural setting is one of oscillator (qumodes). Suppose, we consider the famous
Bose-Hubbard model where the is given by: 
  
  
  
where we have used create /annihilation operators and the number operators. The first term
denotes the hopping of bosons between neighbouring sites and second term is the on-site
potential term.  
 
  
 
 
 
 
 
 
 
 
 
 

H

H = J∑⟨ij⟩ a†
i aj + 1

2 U∑i ̂ni(̂ni − 1)

Bose Hubbard Model with CVs 
(arXiv:1801.06565)

Two-site model

• We can write the time-evolution operator as: 
 
 

 ;

  
 
where BS is the beam-splitter gate, K is the Kerr gate (non-Gaussian), and R is the rotation gate. These
gates are qumodes equivalent of the qubit gates we saw before. For example,
Constructing these gates are major undertaking in quantum photonics labs where the photon is
modelled as an oscillator.  

eiHt = [BS (θ, ϕ) (K(r)R(−r) ⊗ K(r)R(−r))]
N

+ 𝒪 (t2/N)
θ = − Jt/N, ϕ = π /2, r = − Ut/2N

K(κ) = exp(iκ ̂n2) .

• Two steps of evolution can be achieved by the following circuit. 
 
 

• Let’s try it out using Xanadu’s Strawberry Fields photonics
simulator.

Time evolution

#!pip install strawberryfields
import numpy as np
np.random.seed(11)
import strawberryfields as sf
from strawberryfields.ops import *

ham_simulation = sf.Program(2)
Set the Hamiltonian parameters

J = 1 # hopping transition
U = 1.5 # on-site interaction
k = 30 # Lie product decomposition terms
t = 0.0 # timestep
theta = -J*t/k
r = -U*t/(2*k)

with ham_simulation.context as q:

 # Prepare the initial state
 Fock(2) | q[0]

 # Two node Hamiltonian simulation
 for i in range(k):
 BSgate(theta, np.pi/2) | (q[0], q[1])
 Kgate(r) | q[0]
 Rgate(-r) | q[0]
 Kgate(r) | q[1]
 Rgate(-r) | q[1]

eng = sf.Engine(backend="fock", backend_options={"cutoff_dim": 3})
results = eng.run(ham_simulation)
state = results.state
print (state)
print("P(|0, 2>) = ", state.fock_prob([0, 2]))
print("P(|1, 1>) = ", state.fock_prob([1, 1]))
print("P(|2, 0>) = ", state.fock_prob([2, 0]))

result = [state.fock_prob([0,2]), state.fock_prob([1, 1]), state.fock_prob([2, 0])]
print(np.sum(result))
•

• We are entering a new era (similar to lattice gauge theories on classical
computers in the 1970s) where as quantum computers become more
capable, we can start solving ‘some’ problems not possible with current
computers. However, this is not anytime soon. Since, QM is quite restrictive
unlike classical computing, the progress might not be smooth.

• For now, VQE+variants is sort of state-of-the-art. This will improve in coming
decade with more qubits (with error-correction) and better algorithms.

Conclusions

Consequently, although a quantum state of n qubits can be thought to represent a large amount of information, in the sense
that the state is specified by 2^n -1 complex numbers, in fact, such a state can communicate at most n bits of decodable
information

Backup: Holevo bound

41

https://quantiki.org/search/node/%2Bqubits%2B

