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• State-of-the-art classical methods (tensor networks) 


• Why quantum computation? 


• Definitions: qubits, qudits, and qumodes


• Quantum gates with QISKIT demonstration


• Variational Quantum Eigensolver (VQE) for anharmonic oscillator and study of O(3) non-
linear sigma model with qubits. 


• Time evolution circuits with quantum gates 


• Another facet of QC: Qumodes! Example for Bose-Hubbard model 


• Conclusions   

Outline 
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• Hamiltonian version: Approximate the ground state i.e.,  =  of 

a model with local Hamiltonian of  spins in fewer coefficients than , O(N). 

• Lagrangian version: Approximate the partition function using tensor networks 
considering decomposition of Boltzmann weight (truncate if necessary) and then 
coarse-graining by performing successive iterations using singular-value-
decomposition (SVD). 

|ψ⟩ ∑
i1,⋯,iN

Ci1,⋯,iN | i1, ⋯, iN⟩

N 2N

Tensor Networks
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• Provides an arena to study lower-dimensional (critical and gapped) systems 
faster than any other known method available today! [2d Ising model in 10 
seconds on laptop at some fixed temperature] 

• Formulation in terms of tensors can help us study models where the usual 
Monte  Carlo (MC) methods fail (such as finite-density, -term). In addition, 
the thermodynamic limit can be approached faster and partition function can 
be computed unlike MC.

• Description of a quantum state in terms of tensors (MPS) can be useful to 
study real-time dynamics

• Known to play a key role in emergence of space-time via proposals like 
AdS/MERA etc.

θ

Why tensors?
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Matrix Product States (MPS)
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• Reproduce the interesting Physics in less than a minute of computer time 
using tensor methods. Find code if interested here: https://github.com/rgjha 
 
 

Ising Model
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https://github.com/rgjha


• Higher-dimensions are harder. Less progress. There is no known (classical) efficient idea 
similar to MPS in 3+1 dimensions. Time evolution of QFTs (almost impossible) to study 
in these cases. 


• MPS can only faithfully represent ground state of local Hamiltonians for 1d quantum 
systems. 


• Go back to quote by Feynman, 1982. ‘Nature is quantum-mechanical, we cannot 
simulate it classically in an efficient manner’. 

Scalability is a problem!
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Quantum Computation
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• Digital quantum computing: Use qubits to perform computations. 
There are three steps in general: 1) Initial state-preparation, 2) 
Implementing unitary evolution using quantum gates, 3) Measurements. 


• Continuous quantum computing: Use of continuous variables (local 
Hilbert space is strictly infinite-dimensional like say harmonic oscillator) 
to carry out state preparation, time evolution, and measurements

Approaches 



• Qubits: 


• Qudits: 


• Qumodes: 

d = 2, |0⟩, |1⟩

d > 2, say |ψ⟩ = α |0⟩ + β |1⟩ + γ |2⟩

d = ∞

States 



Quantum gates (unitary!) 

| + ⟩ =
1

2 ( |0⟩ + |1⟩)



Classical vs. Quantum 

CNOT gate 
Classical: Boolean Algebra

(aka 
 CX gate)

       CX = |0⟩⟨0 | ⊗ I + |1⟩⟨1 | ⊗ X CZ = |0⟩⟨0 | ⊗ I + |1⟩⟨1 | ⊗ Z



Other gates 



• Open-source SDK developed by IBM which acts as a simulator. Think of this 
as how airline pilots train in a simulator before real flights. The programs can 
be sent to IBM devices if you have an account. For learning purposes, 
QISKIT is good enough. 


• You can install on your laptop and play around. I will show you some 
examples. Many working codes can be found in the arXiv article. 

QISKIT implementation



#!pip install qiskit ipywidgets
# Creating a circuit with 4 quantum bits and 2 classical bits
qc = QuantumCircuit(2,2)

qc.h(0)
qc.cx(0,1)
qc.draw()

qc.measure(0,0)
qc.measure(1,1) 

counts = execute(qc, Aer.get_backend('qasm_simulator'), 
shots=1024).result().get_counts() 
plot_histogram(counts)

Bell state: Measure



# Creating a circuit with 4 quantum bits and 2 classical bits
qc = QuantumCircuit(4,2)

qc.h(0)
qc.cx(0,1)
qc.draw()
# To Bell State: Hadamard followed by CNOT

Bell state cont. 



# We will now construct GHZ state 
from qiskit import *
from qiskit.quantum_info import *
from qiskit.visualization import *
qn = 3 # three-qubit GHZ

circ = QuantumCircuit(qn)
circ.h(0)
circ.cx(0, 1)
circ.cx(0, 2)
circ.draw()

ghz = Statevector.from_instruction(circ)
display(array_to_latex(ghz, prefix="\\text{Statevector} = "))

Example: GHZ state  [                 ]( |000⟩ + |111⟩)/ 2



Visualize! 

A random two-qubit state 



• One of the most popular algorithms in the NISQ-era is the variational quantum 
eigensolver (VQE). This is actually a hybrid quantum/classical algorithm. 


• The steps are: 
 
1.  Prepare initial state on QC i.e.,  
 
2.  Obtain good ansatz by acting with some i.e.,  
 
3. Measure energy on QC and optimise the parameters  using classical optimisers  
 
4. Repeat until convergence. 

|0⟩

U(Θ) |ψ⟩ = U |0⟩

Θ

Quantum Algorithms



VQE representation



• We can write the Hamiltonian as a  matrix using . Then using the fact that 
every such matrix can be written entirely in terms of X, Y, Z, I, we decompose it in Pauli 
strings [strings of Paulis]. This method has been extensively used to study various 
molecules in quantum chemistry like  etc. 


• With some fixed coupling of cubic term, we get our AHO Hamiltonian as:  
 
 

2n × 2n a, a†

H2, BeH2

VQE continued ..



import numpy as np
import math
import time
import warnings
import itertools
from qiskit import Aer
from qiskit.algorithms import VQE
from qiskit.opflow import MatrixOp
from qiskit.opflow import X, Y, Z, I
from qiskit.algorithms.optimizers import SLSQP
from qiskit.algorithms.optimizers import COBYLA
from qiskit.circuit.library import EfficientSU2
from qiskit.utils import algorithm_globals, QuantumInstance
from qiskit.visualization.array import array_to_latex

Hps = (4 * I ^ I ^ I)+(-0.152955 * I ^ I ^ X)+(-0.5 * I ^ I ^ Z)+(-0.12289 * I ^ X ^
    X)+(-0.0629948 * I ^ Y ^ Y)+(-1 * I ^ Z ^ I)+(0.0237627 * I ^ Z ^ X)+(-0.0280252 * X ^ I
    ^ X)+(-0.0561195 * X ^ X ^ X)+(0.0287333 * X ^ Y ^ Y)+(0.0107047 * X ^ Z ^ X)+(-0.0280252
    * Y ^ I ^ Y)+(-0.0287333 * Y ^ X ^ Y)+(-0.0561195 * Y ^ Y ^ X)+(0.0107047 * Y ^ Z ^
    Y)+(-2 * Z ^ I ^ I)+(0.0872346 * Z ^ I ^ X)+(0.0842295 * Z ^ X ^ X)+(0.041655 * Z ^ Y ^
    Y)+(0.0207442 * Z ^ Z ^ X)

•

Anharmonic oscillator - Set up 



start_time = time.time()
nbits =3 
var_form = EfficientSU2(nbits, su2_gates=['ry'], entanglement="full", reps=1)
rngseed = 5
warnings.filterwarnings("ignore")
backend = Aer.get_backend("statevector_simulator")
q_instance = QuantumInstance(backend, seed_transpiler=rngseed, 
seed_simulator=rngseed)
#optimizer = SLSQP(maxiter=600)
optimizer = COBYLA(maxiter=600)

# Run the VQE
vqe = VQE(ansatz=var_form,optimizer=optimizer,quantum_instance=q_instance)
ret = vqe.compute_minimum_eigenvalue(Hps)
vqe_result = np.real(ret.eigenvalue)
print("VQE Result:", vqe_result)
exact = 0.5 - (11/8)*g*g -(465/32)*g*g*g*g
print ("Exact result for cubic oscillator upto O(g^4) is", exact)
print ("Error is", np.round(abs((exact-vqe_result)/exact)*100,10), "percent")
end_time = time.time()
runtime = end_time-start_time
print('Program runtime: ',runtime, "seconds")
•

Anharmonic oscillator



• The Hamiltonian is given by ( ) : 
 

                                        


• We can construct this matrix for some fixed value of   
 
The Hamiltonian for a -site lattice is a  matrix. We can 
consider model with or without a -term. As we saw before, we need to express the H in 
terms of qubits which is often done use Jordan-Wigner or Bravyi-Kitaev transformations. 

β = 1/g2

Ĥ =
1

2β ∑
i

L2
i − β∑

⟨i,j⟩

ni ⋅ nj,

lmax.

N (lmax. + 1)2N × (lmax. + 1)2N

θ

arXiv: 2210.03679 [quant-ph]  

O(3) model in 1+1



arXiv: 2210.03679 [quant-ph]  

O(3) model 



• At the moment, VQE is at times, no better than exact diagonalization. But, 
there are various improvements and it will improve in future. 

Results 

β = 0.1 β = 10



• One of the problems where theoretical physicists would like to apply QC is to 
understand the time-evolution of some complicated quantum many-body 
system. Suppose, we have spin-1/2 particle each on two sites with some  
below, we would need two qubits to initialise the state say, . Now 
suppose the 4x4 Hamiltonian of this two-site model is given by:  
 
                                   
 
 
We want to do time evolution of this system i.e., . We have to 
represent this unitary operator with quantum (unitary) gates. 

H
|00⟩

H = (X ⊗ X) + (Y ⊗ Y )

exp(−iHt)

Time evolution of quantum systems



• Note that we have to keep  sufficiently small, so we have to repeat 
the circuit below  times where . As we can see, we need 
about  unitary gates (4 one-qubit, and 4 two-qubit) for this simple 
Hamiltonian and two sites! 
 

                        
 

dt
N N = t/dt

8N

Time evolution of quantum systems



Basic idea
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Simple demonstration 

circ = QuantumCircuit(2,2)
t = 0.1
circ.h(0)
circ.h(1)
circ.cx(0,1)
circ.rz(t,1)
circ.cx(0,1)
circ.h(0)
circ.h(1)
circ.draw()

# Now since we see that we are happy with the circuit. Let’s measure!

circ.measure(0,0) 
circ.measure(1,1) 

counts = execute(circ, Aer.get_backend('qasm_simulator'), 
shots=1024).result().get_counts() 
plot_histogram(counts)



• As mentioned before, there are other ways to approach quantum computing 
not just 2-state (or qubit) methods. We can also use a quantum mechanical 
HO. There are now simulators for qumodes (or continuous variables as well) 
like Bosonic QISKIT, Strawberry Fields etc. 

Using qumodes 



• For fermionic systems, like Ising model, the qubit approach is generally preferred but for 
models with bosonic degrees of freedom (where the local Hilbert space dimension is infinite), 
the more natural setting is one of oscillator (qumodes). Suppose, we consider the famous 
Bose-Hubbard model where the  is given by: 
                         
                                                 
  
where we have used create /annihilation operators and the number operators. The first term 
denotes the hopping of bosons between neighbouring sites and second term is the on-site 
potential term.  
 
                                              
 
 
 
 
 
 
 
 
 
 

H

H = J∑⟨ij⟩ a†
i aj + 1

2 U∑i ̂ni( ̂ni − 1)

Bose Hubbard Model with CVs 
(arXiv:1801.06565) 



Two-site model

• We can write the time-evolution operator as: 
 
 

 ; 

   
 
where BS is the beam-splitter gate, K is the Kerr gate (non-Gaussian), and R is the rotation gate. These 
gates are qumodes equivalent of the qubit gates we saw before. For example, 
Constructing these gates are major undertaking in quantum photonics labs where the photon is 
modelled as an oscillator.             

eiHt = [BS (θ, ϕ) (K(r)R(−r) ⊗ K(r)R(−r))]
N

+ 𝒪 (t2/N)
θ = − Jt/N, ϕ = π /2, r = − Ut/2N

K(κ) = exp(iκ ̂n2) .



• Two steps of evolution can be achieved by the following circuit. 
 
 

              


• Let’s try it out using Xanadu’s Strawberry Fields photonics 
simulator. 

Time evolution 



#!pip install strawberryfields
import numpy as np
np.random.seed(11)
import strawberryfields as sf
from strawberryfields.ops import *

ham_simulation = sf.Program(2)
# Set the Hamiltonian parameters

J = 1           # hopping transition
U = 1.5         # on-site interaction
k = 30          # Lie product decomposition terms
t = 0.0         # timestep
theta = -J*t/k
r = -U*t/(2*k)

with ham_simulation.context as q:
    
    # Prepare the initial state
    Fock(2) | q[0]

    # Two node Hamiltonian simulation
    for i in range(k):
        BSgate(theta, np.pi/2) | (q[0], q[1])
        Kgate(r)  | q[0]
        Rgate(-r) | q[0]
        Kgate(r)  | q[1]
        Rgate(-r) | q[1]

eng = sf.Engine(backend="fock", backend_options={"cutoff_dim": 3})
results = eng.run(ham_simulation)
state = results.state
print (state)
print("P(|0, 2>) = ", state.fock_prob([0, 2]))
print("P(|1, 1>) = ", state.fock_prob([1, 1]))
print("P(|2, 0>) = ", state.fock_prob([2, 0]))

result = [state.fock_prob([0,2]), state.fock_prob([1, 1]), state.fock_prob([2, 0])]
print(np.sum(result))
•



• We are entering a new era (similar to lattice gauge theories on classical 
computers in the 1970s) where as quantum computers become more 
capable, we can start solving ‘some’ problems not possible with current 
computers. However, this is not anytime soon. Since, QM is quite restrictive 
unlike classical computing, the progress might not be smooth. 


• For now, VQE+variants is sort of state-of-the-art. This will improve in coming 
decade with more qubits (with error-correction) and better algorithms. 

Conclusions









Consequently, although a quantum state of n qubits can be thought to represent a large amount of information, in the sense 
that the state is specified by 2^n -1 complex numbers, in fact, such a state can communicate at most n bits of decodable 
information

Backup: Holevo bound 
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https://quantiki.org/search/node/%2Bqubits%2B

