Astronomy and Astrophysics Seminars
From Pixels to Population: Understanding Gas Giants around M dwarfs
by Shubham Kanodia (Penn State University)
Tuesday, March 1, 2022
from
to
(Asia/Kolkata)
at https://zoom.us/j/97230932502?pwd=L002RWN5QjBZTDZHRE1vaENBL2M2UT09
at https://zoom.us/j/97230932502?pwd=L002RWN5QjBZTDZHRE1vaENBL2M2UT09
Meeting ID: 972 3093 2502
Passcode: 353542
Description |
In this talk I will start off by discussing my contribution in the development of the two new radial velocity spectrographs - the Habitable zone Planet Finder (HPF) and NEID. HPF is a near infrared spectrograph that specializes in the search for planets around mid-to-late M dwarfs, while NEID is an optical spectrograph achieving sub m/s precision around G,K, and early M dwarfs. I will discuss how we use these two instruments to follow up on TESS planet candidates around M dwarf hosts. In addition, I've helped develop novel nonparametric tools to model the mass-radius plane for exoplanets. Finally, I will briefly discuss plans for future characterization of the M dwarf planetary population using a combination of precise RVs, high dimensional nonparametric techniques, and estimates of TESS occurrence rates for planets orbiting M dwarfs. By simultaneously fitting 4-5 dimensions (planetary mass, radius, period, stellar mass, stellar metallicity, etc.) using these flexible nonparametric methods, we hope to search for trends in the sample that can give clues about the validity of different formation mechanisms. Specifically for M dwarfs, bridging the gap between the long period RV planets and the short period transiting planets. The former shows a weaker correlation with metallicity that hints at disk instability as a potential formation mechanism. On the contrary, the sample of transiting giant planets around M dwarfs strongly favours the core accretion theory of planet formation. |
Organised by | DAA |