State of the Universe

Neutrino flavor mixing, outflow hydrodynamics, and $\nu p$-process nucleosynthesis in supernovae

by Dr. Amol Patwardhan (SLAC National Accelerator Laboratory)

Thursday, March 23, 2023 from to (Asia/Kolkata)
at A304 and Zoom : Join Zoom Meeting https://zoom.us/j/82512956967?pwd=angyQ0ZDdHZUdzFUbjkybmxsWFNFUT09 Meeting ID: 825 1295 6967 Passcode: 384194
Description
Neutrinos in core-collapse supernovae are the main carriers of energy and lepton number, and therefore play an important role in the explosion mechanism as well as in the synthesis of nuclides in these environments. In the aftermath of a supernova explosion, neutrino-induced heating drives outflows of baryonic matter from the surface of the nascent neutron star. The physical characteristics of these outflows, such as expansion timescale, entropy, and electron fraction, can significantly impact the synthesis of proton-rich isotopes via the $\nu p$-process. This could be of much relevance to a long-standing problem in nuclear astrophysics, pertaining to the origin of certain proton-rich nuclides in nature: $^{92,94}$Mo and $^{96,98}$Ru. In particular, self-consistently modeled subsonic outflows from explosions of massive progenitors can be shown to furnish $\nu p$-process yields consistent with observed Mo and Ru abundances. These isotopic yields can also be directly influenced by neutrino flavor mixing in the vicinity of the neutron star. In this talk, we examine this interplay between matter outflows, neutrino mixing, and nucleosynthesis in core-collapse supernovae.