School of Technology and Computer Science Seminars

Probabilistic Approximation of Metrics by Tree Metrics

by Mr. Nithin Varma (School of Technology and Computer Science, TIFR)

Friday, May 17, 2013 from to (Asia/Kolkata)
at Colaba Campus ( A-212 (STCS Seminar Room) )
Description
Consider a finite set $V$ and a function $d: V \times V \rightarrow \mathbb{R}$ such that $(V,d)$ forms a metric space. A function $d_T : V' \times V' \rightarrow \mathbb{R}$ is called a tree metric on $V'$ if for all $u,v \in V'$, $d_T(u,v)$ is the length of the unique shortest path between them in $T$, where $T$ is a tree on $V'$ with nonnegative lengths on its edges. A well studied problem in literature is to approximate a given metric $d$ on $V$ using some tree metric $d_T$ on $V' \supseteq V$ in the sense that $d(u,v) \le d_T(u,v) \le \alpha d(u,v)$ for all $u,v \in V$ and for some $\alpha$. In this talk, I will present the result of Fakcharoenphol et al. that there is a randomized polynomial time algorithm which, given any metric $d$ on an $n$-sized set $V$, produces a tree metric $d_T$ on some $V' \supseteq V$, such that for all $u,v \in V$, $d(u,v) \le d_T(u,v)$ and $E[d_T(u,v)] \le O(\log n) d(u,v)$.