ASET Colloquium

Superconducting Quantum Circuits

by Prof. Michel Devoret (Department of Applied Physics, Yale University, USA)

Monday, October 20, 2014 from to (Asia/Kolkata)
at AG-66
Description
The principles of quantum mechanics were introduced about a hundred years ago to explain the properties of microscopic systems like atoms and molecules. Recently, macroscopic systems in the form of electrical circuits containing billions of atoms have attained sufficient perfection that radiofrequency currents circulating in their wires can constitute single photons controllably exchanged with a measurement apparatus. These quantum circuits exploit both the dissipation-less character of superconductivity and the non-linearity of the Josephson effect. It is even now possible to design such macroscopic “artificial atoms” to perform functions unattainable with natural ones. Superconducting integrated circuits serving as quantum bits illustrate the problem of engineering a quantum electrodynamic system from top to bottom. A simple Lego-like set of three basic elements - linear capacitances, linear inductances and non-linear Josephson inductances - can be combined with almost no limitations. Can circuit architecture mitigate or even eliminate decoherence due to unavoidable defects of basic electrical components? This key question addressed to superconducting quantum bits will be discussed starting from the present entries of their "Mendeleev table".

 
About Prof. Michel Devoret:


Michel Devoret graduated from Ecole Nationale Superieure des Telecommunications in Paris in 1975 and started graduate work in molecular quantum physics at the University of Orsay. He then joined Professor Anatole Abragam's laboratory in CEA-Saclay to work on NMR in solid hydrogen, and received his PhD from Paris University in 1982. He spent two post-doctoral years working on macroscopic quantum tunneling with John Clarke's laboratory at the University of California, Berkeley. He pursued this research on quantum mechanical electronics upon his return to Saclay, starting his own research group with Daniel Esteve and Cristian Urbina. He became director of research at the Commissariat a l'Energie Atomique (CEA) at Saclay. Currently a faculty member at Yale University, he focuses his research on experimental solid state physics with emphasis on quantum mechanical electronics or "quantronics". In this new type of electronics, electrical collective degrees of freedom like currents and voltages behave quantum mechanically. Such mesoscopic phenomena are particularly important in the realization of quantum information processing superconducting devices, which is his main research goal.

Michel has received the Ampere Prize of the French Academy of Science (together with Daniel Esteve, 1991), the Descartes-Huygens Prize of the Royal Academy of Science of the Netherlands (1996) and the Europhysics-Agilent Prize of the European Physical Society (together with Daniel Esteve, Hans Mooij and Yasunobu Nakamura, 2004). He is also a recipient of the John Stewart Bell Prize, which he received jointly with Rob Schoelkopf in 2013. In 2007, he has been appointed to the College de France, where he taught until 2012. More recently, he was awarded the Fritz London Prize for Low Temperature Physics in 2014 along with Robert Schoelkopf and John Martinis

Michel is a member of the American Academy of Arts and Sciences (2003) and a member of the French Academy of Sciences (2008).


Organised by Dr. Satyanarayana Bheesette