School of Technology and Computer Science Seminars

Popular Matchings in the Stable Marriage Problem

by Kavitha Telikepalli (School of Technology and Computer Science, TIFR)

Tuesday, September 5, 2017 from to (Asia/Kolkata)
at A-201 (STCS Seminar Room)
Description
The stable marriage problem consists of a bipartite graph $G = (A \cup B,E)$ where every vertex has a ranking of its neighbours in a strict order of preference. Every stable matching matches the same subset of vertices. In this talk we consider a relaxation of stability called {\em popularity} -- this notion was introduced by G\"ardenfors in 1975 and  it is based on ``global stability''. A matching is popular if it never loses a head-to-head election against any matching where each vertex casts a vote.

A stable matching is a min-size popular matching and there is a simple and efficient algorithm to compute a max-size popular matching in $G$. However it is NP-hard to compute a max-utility popular matching when there is a utility function on the edge set.  A max-utility popular {\em mixed matching},  i.e., a probability distribution over matchings, could have a much higher utility than all popular matchings in $G$ and it can be computed in polynomial time. This mixed matching has a simple structure: it is of the form $\{(M, \frac{1}{2}), (M',\frac{1}{2})\}$ where $M$ and $M'$ are matchings in G. This structure is due to the self-duality of the linear program that gives rise to the polytope of popular fractional matchings in $G$.