DCMPMS Seminars

Electronic and Optoelectronic Physics in the van der Waals Heterojunctions of 2-dimensional Materials

by Prof. Philip Kim (Harvard University)

Tuesday, January 9, 2018 from to (Asia/Kolkata)
at AG66
Description
Heterogeneous interfaces between two dissimilar materials are an essential building block for modern semiconductor devices. The 2-dimensional (2D) van der Waals (vdW) materials and their heterostructures provide a new opportunity to realize atomically sharp interfaces in the ultimate quantum limit for the electronic and optoelectronic processes. By assembling atomic layers of vdW materials, such as hexa boronitride, transition metal chalcogenide and graphene, we can construct atomically thin novel quantum structures. Unlike conventional semiconductor heterostructures, charge transport in of the devices is found to critically depend on the interlayer charge transport, electron-hole recombination process mediated by tunneling across the interface. We demonstrate the enhanced electronic optoelectronic performances in the vdW heterostructures, tuned by applying gate voltages, suggesting that these a few atom thick interfaces may provide a fundamental platform to realize novel physical phenomena. In addition, spatially confined quantum structures in TMDC can offer unique valley-spin features, holding the promises for novel mesoscopic systems, such as valley-spin qubits. We report the fabrication of the gate-defined quantum structures formed in atomically thin TMDC heterostructures, exhibiting quantum transport phenomena and optoelectronic processes.