State of the Universe

Lepton Flavored Dark Matter: Two Scenarios

by Ms. Shiuli Chatterjee (IISc, Bangalore)

Tuesday, December 14, 2021 from to (Asia/Kolkata)
at ZOOM MEETING: https://us02web.zoom.us/j/82704734378?pwd=VkxoS0JJTGhyU3hFeEZYemxpMEE4QT09 MEETING ID: 827 0473 4378 PASSCODE: 311436
Description
I will discuss two cases of lepton flavored dark matter and entailing phenomenology.

In the first part of the talk, I will discuss the connection between the stability of and the symmetries possessed by a lepton flavored dark matter (LFDM), systematically showing that many representations of LFDM are stable under the minimal flavor violation (MFV) hypothesis as long as there are no lepton number violating interactions. I will then discuss the production of the dark matter (DM) showing that an LFDM in the MFV framework naturally accommodates a freeze-in production, and finish with a discussion on its detection at present and future direct detection experiments. In the second part of the talk, I will discuss the robustness of neutron stars as probes of particle DM.  Focusing on the case of lepton flavored DM, I will discuss the capture of such DM by muons leading to kinetic heating in old neutron stars. The temperatures of such old neutron stars can be probed at near future telescopes like the James Webb Space Telescope (JWST). I will discuss our results showing that the capture rates and subsequently the temperatures of the neutron stars are crucially dependent on the DM properties as opposed to the astrophysical properties of the neutron stars, like equation-of -state, the velocity of the neutron star, DM halo distribution, etc.