DCMPMS Seminars
Fingerprints of Composite Fermion Lambda Levels in Scanning Tunneling Microscopy
by Dr. Ajit Balaram (Institute of Mathematical Sciences Chennai)
Monday, March 18, 2024
from
to
(Asia/Kolkata)
at Venue: A269 , TIFR Mumbai https://us02web.zoom.us/j/81011492931 Passcode: YT^.3y
at Venue: A269 , TIFR Mumbai https://us02web.zoom.us/j/81011492931 Passcode: YT^.3y
Description |
Composite fermion (CF) is a topological quasiparticle that emerges from a non-perturbative attachment of vortices to electrons in strongly correlated two-dimensional materials. Similar to non-interacting fermions that form Landau levels in a magnetic field, CFs can fill analogous ``Lambda'' levels, giving rise to the fractional quantum Hall (FQH) effect of electrons. Here, we show that Lambda levels can be directly visualized through the characteristic peak structure in the signal obtained via spectroscopy with the scanning tunneling microscopy (STM) on a FQH state. Complementary to transport, which probes low-energy properties of CFs, we show that high-energy features in STM spectra can be interpreted in terms of Lambda levels. We numerically demonstrate that STM spectra can be accurately modeled using Jain's CF theory. Our results show that STM provides a powerful tool for revealing the anatomy of FQH states and identifying physics beyond the non-interacting CF paradigm. Songyang Pu, Ajit C. Balram, Yuwen Hu, Yen-Chen Tsui, Minhao He, Nicolas Regnault, Michael P. Zaletel, Ali Yazdani, Zlatko Papić, arXiv:2312.06779 |